RF Test Report

Report No.: AGC01813161203EE05

PRODUCT DESIGNATION: 3G Dual-SIM Smartphone

BRAND NAME : vonino

MODEL NAME : Volt S

CLIENT : Vonino ELectronics LTD

DATE OF ISSUE : Dec. 30, 2016

STANDARD(S) EN 300 328 V1.9.1 (2015-02)

REPORT VERSION V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

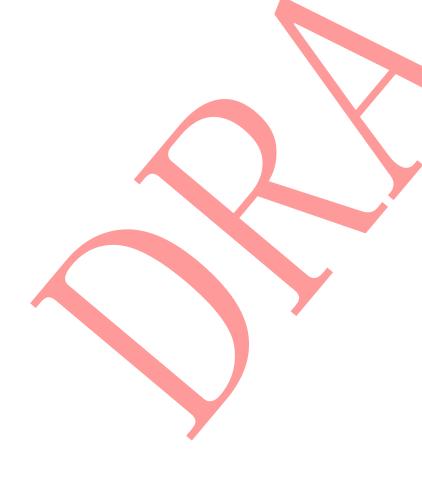
CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC01813161203EE05 Page 2 of 68

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Dec. 30, 2016	Valid	Original Report


TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. GENERAL INFORMATION	
2.1. DESCRIPTION OF EUT	5
2.2. OBJECTIVE	
2.3. TEST STANDARDS AND RESULTS	
2.4. TEST ITEMS AND THE RESULTS	
2.5. ENVIRONMENTAL CONDITIONS	
3. MEASUREMENT UNCERTAINTY	7
4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	8
5. ETSI EN 300 328 REQUIREMENTS	9
5.1. RF OUTPUT POWER	g
5.2. POWER SPECTRAL DENSITY	18
5.3. ADAPTIVITY AND RECEIVER BLOCKING	27
5.4. OCCUPIED CHANNEL BANDWIDTH	35
5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	40
5.6 TRANSMITTER SPURIOUS EMISSIONS	44
5.7 RECEIVER SPURIOUS EMISSIONS	54
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	63
APPENDIX B: PHOTOGRAPHS OF EUT	64

Report No.: AGC01813161203EE05 Page 4 of 68

1. TEST REPORT CERTIFICATION

Applicant	Vonino ELectronics LTD		
Address	Miramar Tower 10F- No.1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong		
Manufacturer	Gui zhou Fortuneship Technology Co., Ltd		
Address	No. 4 Plant, High-tech Industrial Park, Xinpu Economic Development Zone) Jingkai Road, Xinpu Jingkai District, Xinpu New District, Zunyi City, Guizhou Province, P. R. China		
Product Designation	3G Dual-SIM Smartphone		
Brand Name	vonino		
Test Model	Volt S		
Date of test	Dec. 15, 2016 to Dec. 22, 2016		
Deviation	None		
Condition of Test Sample	Normal		
Report Template	AGCRT-EC-BGN/RF		

Page 5 of 68

2. GENERAL INFORMATION

2.1. DESCRIPTION OF EUT

Note: the following data is based on the information by the applicant.

Hardware Version	ZH066-MB-V3.0		
Software Version	N/A		
Operating Frequency	2.412 GHz~2.472GHz		
Support Channels	13 Channels (IEEE802.11b/g/n)		
Modulation	CCK,OFDM,BPSK,GPSK,16-QAM,64-QAM		
Adaptive / non-adaptive equipment	Adaptive Equipment		
Antenna Type	PIFA antenna		
Antenna Gain	1.0dBi		
Power Supply	Normal Voltage: DC 3.8V		
Channels Frequency	01: 2412MHZ 08: 2447MHZ 09: 2452MHZ 10: 2457MHZ 10: 2457MHZ 11: 2462MHZ 12: 2467MHZ 13: 2472MHZ		
	07: 2442MHZ		

Note:

- 1. For 802.11b, 802.11g, 802.11n 20MHZ bandwidth system use Channel 1 to Channel 13.
- 2. For 802.11n 40MHZ bandwidth system use Channel 3 to Channel 11.
- 3. Please refer to Appendix I for the photographs of the EUT. For more details, please refer to the User's manual of the EUT.

2.2. OBJECTIVE

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the R&TTE Directive (1999/5/EC) for the WLAN of the EUT.

2.3. TEST STANDARDS AND RESULTS

The EUT has been tested according to ETSI EN 300 328 V1.9.1

	Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband
ETSI EN 300 328	Transmission systems; Data transmission equipment operating in the 2.4GHz
V1.9.1 (2015-02)	ISM band and using spread spectrum modulation techniques: Part 2:
V1.9.1 (2015-02)	Harmonized EN covering essential requirements under article 3.2 of the R&TTE
	Directive.

Page 6 of 68

2.4. TEST ITEMS AND THE RESULTS

No.	Basic Standard	Test Type	Result
1	ETSI EN 300 328 4.3.2.2	RF Output Power	Pass
2	ETSI EN 300 328 4.3.2.3	Power Spectral Density	Pass
3	ETSI EN 300 328 4.3.2.4	Duty Cycle, Tx-sequence, Tx-gap	N/A
4	ETSI EN 300 328 4.3.2.4	Medium Utilisation(MU) factor	N/A
5	ETSI EN 300 328 4.3.2.6	Adaptivity	Pass
6	ETSI EN 300 328 4.3.2.7	Occupied Channel Bandwidth	Pass
7	ETSI EN 300 328 4.3.2.8	Transmitter unwanted emissions in the out-of-band domain	Pass
8	ETSI EN 300 328 4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
9	ETSI EN 300 328 4.3.2.10	Receiver spurious emissions	Pass
10	ETSI EN 300 328 4.3.2.11	Receiver Blocking	Pass
12	ETSI EN 300328 4.3.1.13	Geo-location capability	N/A

Note:

1. N/A- Not Applicable.

2. The latest versions of basic standards are applied.

2.5. ENVIRONMENTAL CONDITIONS

- Temperature: -20-55°C

- Humidity: 30-60 %

- Atmospheric pressure: 86-106 kPa

Page 7 of 68

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

- Uncertainty of Radio Frequency, Uc=±1 x 10-7
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8dB$
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of spurious emissions, radiated, Uc = ±5.4dB
- Uncertainty of Temperature: ±0.5°C
- Uncertainty of Humidity: ±1 %
- Uncertainty of DC and low frequency voltages: ±2%

Page 8 of 68

4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Company Name:	Attestation of Global Compliance (Shenzhen) Co., Ltd.	
Address 1:	2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China	
Address 2:	B112-B113, Building 12, Baoan Building Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen, Guangdong, P.R.China	

List of Equipments Used

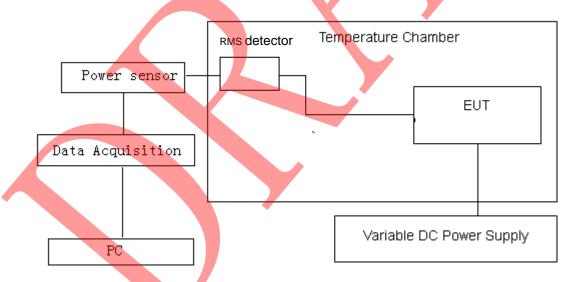
Description	Manufacturer	Model No.	S/N	Calibration Date	Calibration Due.
SIGNAL ANALYZER	Agilent	N9020A	MY49100060	Oct.10, 2016	Oct.09,2017
SIGNAL GENERATOR	Agilent	N5182A	MY50140530	Oct.10, 2016	Oct.09,2017
SIGNAL GENERATOR	Agilent	E8257D	MY45141029	Oct.10, 2016	Oct.09,2017
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	Oct.10, 2016	Oct.09,2017
USB Wideband Power Sensor	Agilent	U2021XA	MY54110009	Oct.10, 2016	Oct.09,2017
USB Wideband Power Sensor	Agilent	U2021XA	MY54110014	Oct.10, 2016	Oct.09,2017
USB Wideband Power Sensor	Agilent	U2021XA	MY54110012	Oct.10, 2016	Oct.09,2017
USB Simultaneous Sampling Multifunction DAQ	Agilent	U2531A	MY5211038	Oct.10, 2016	Oct.09,2017
2.4 GHz Filter	Micro-Tronics	BRM50702	017	Mar.01,2016	Feb.28,2017
VECTOR ANALYZER	Agilent	E4440A	MY44303916	July 02, 2016	July 01,2017
Trilog-Broadband Antenna	Trilog-Broadband Antenna SCHWARZBEK		VULB 9168-492	Mar.01, 2016	Feb.28,2017
Trilog-Broadband Antenna	SCHWARZBEK	VULB 9168	VULB 9168-494	Mar.12,2016	Mar.11,2017
Amplifier	EM	EM30180	060552	Feb.29,2016	Feb.28,2017
Horn Antenna	EM	EM-AH-10180	67	Mar.01,2016	Feb.28,2017

Page 9 of 68

5. ETSI EN 300 328 REQUIREMENTS

5.1. RF OUTPUT POWER

5.1.1 **LIMIT**


RF Output Power <= 100mW (20dBm) over Normal and Extreme conditions.

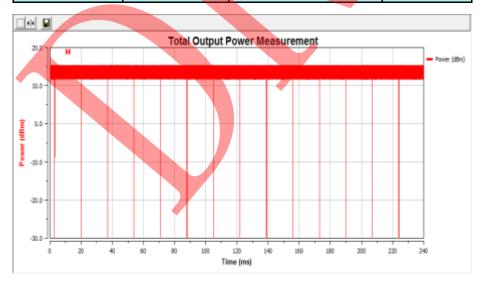
5.1.2 MEASUREMENT PROCEDURE

- 1) Use a fast power sensor and set the samples speed 1MS/s or faster.
- 2) Connect one power sensor to each transmit port, Trigger the power sensors so that they start sampling at the same time. For each instant in time, sum the power of the individual samples of all ports and store them. Use these stored samples in all following steps.
- 3) Find the start and stop times of each burst in the stored measurement samples.
- 4) Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these Pburst values, as well as the start and stop times for each burst.
- 5) The highest of all Pourst values (Value "A" in dBm) will be used for maximum e.i.r.p calculations.
- 6) The cable loss and attenuator factor shall be considered to the value "A".
- 6) Add the (stated) antenna assembly gain "G" in dBi of the individual antenna. If applicable, add the additional beamforming gain "Y" in dB.
- 7) The RF output power (P) shall be calculated using the formula: P=A+G+Y

5.1.3 TEST CONFIGURATION

Temperature and Voltage Measurement (under normal and extreme test conditions)

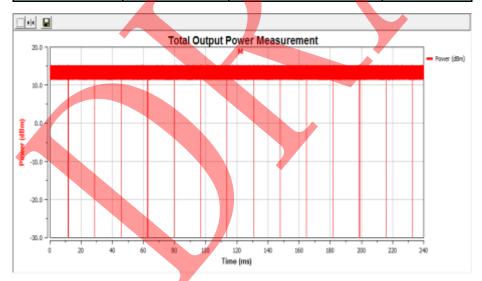
Page 10 of 68


5.1.4 MEASUREMENT RESULTS

Operation Mode	Single TX	Test Date	Dec. 19, 2016	
Temperature	23.6°C	Tested by	Dota	
Humidity	54.2 % RH	Polarity	-	
Antenna assembly Gain		= 1.0dBi		
Cable Loss		=1.0dB		
Beamforming gain		=0dB		
EIRP		= P+ Gain+Y		

TEST CONDITIONS		IEEE 802.11b TRANSMITTER POWER (dBm)			
		Temp (25)°C	Temp (25)°C Temp (-20)°C		
CHANNEL	VOL POWER	DC 3.8V	DC 3.8V	DC 3.8V	
CH 01	EIRP	13.98		13.70	
CH 07	EIRP	13.84 13.59		13.82	
CH 13	EIRP	10.51 10.31		10.31	
Limit		20dBm			
Measurement uncertainty		+ 0.28dB / - 0.30dB			
Note		Only the worst case data is reported as below.			

1*802.11 b:CH Low-2412: (Temp - Normal)


Channel Voltage		Conducted Power (dBm)	EIRP (dBm)
CH Low-2412	Normal	12.98	13.98

Report No.: AGC01813161203EE05 Page 11 of 68

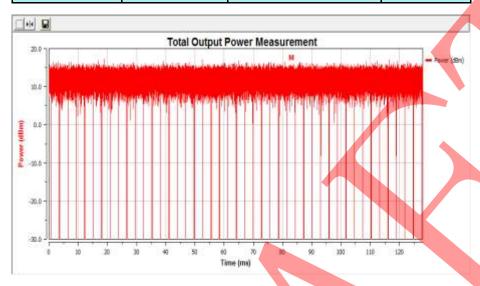
2*802.11 b:CH Mid-2442: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)		EIRP (dBm)
CH Mid-2442	Normal	12	2.84	13.84

Page 12 of 68

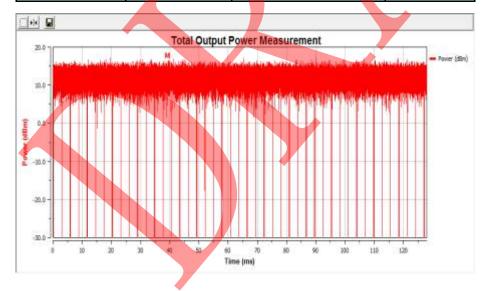
3*802.11 b:CH High-2472: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2472	Normal	9.51	10.51



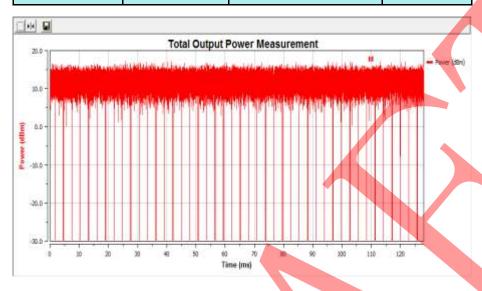
TEST	CONDITIONS	IEEE 802.11g TRANSMITTER POWER (dBm)						
1231	CONDITIONS	Temp (25)°C	Temp (25)°C Temp (-20)°C Temp (55)°C					
CHANNEL	VOL	DC 3.8V	DC 3.8V	DC 3.8V				
CH 01	EIRP	12.73	12.64	12.62				
CH 07	EIRP	12.79	12.49	12.58				
CH 13	EIRP	12.45	12.65	12.77				
	Limit		20dBm					
Measurer	nent uncertainty		+ 0.28dB / - 0.30dB					
	Note	Only t	Only the worst case data is reported as below.					

Page 13 of 68


4*802.11 g:CH Low-2412: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2412	Normal	11.73	12.73

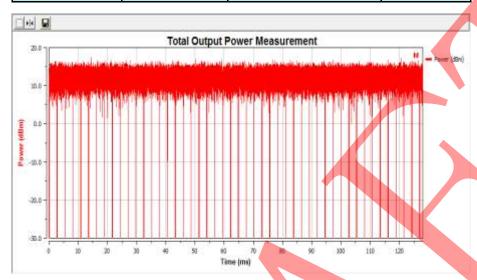
5*802.11 g:CH Mid-2442: (Temp - Normal)


Channel	Voltage	Conducted Power (dBm)			EIRP (dBm)
CH Mid-2442	Normal		11.79		12.79

Page 14 of 68

6*802.11 g:CH High-2472: (Temp - High)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2472	Normal	11.77	12.77



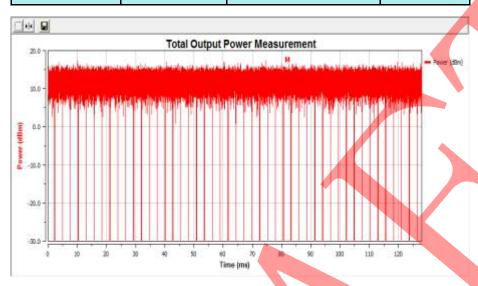
TEST	CONDITIONS		IEEE 802.	11n(20) TRANSMITTER POWER (dBm)			
1531	CONDITIONS		Temp (25)°C Temp (-20)°C Temp (55)°C				
CHANNEL	VOL		DC 3.8V	DC 3.8V	DC 3.8V		
CH 01	EIRP		12.92	12.88	12.73		
CH 07	EIRP		12.67	12.76	12.85		
CH 13	EIRP		12.69	12.51	12.49		
	Limit			20dBm			
Measurer	ment uncertainty		+ 0.28dB / - 0.30dB				
	Note		Only the worst case data is reported as below.				

Report No.: AGC01813161203EE05 Page 15 of 68


7*802.11 n20:CH Low-2412: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2412	Normal	11.92	12.92

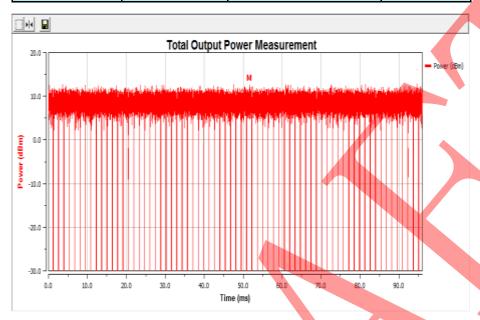
8*802.11 n20:CH Mid-2442: (Temp - High)


Channel	Voltage	Co	nducted Por (dBm)	wer	EIRP (dBm)
CH Mid-2442	Normal		11.85		12.85

Report No.: AGC01813161203EE05 Page 16 of 68

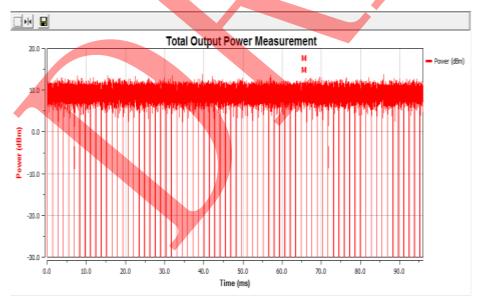
9*802.11 n20:CH High-2472: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2472	Normal	11.69	12.69



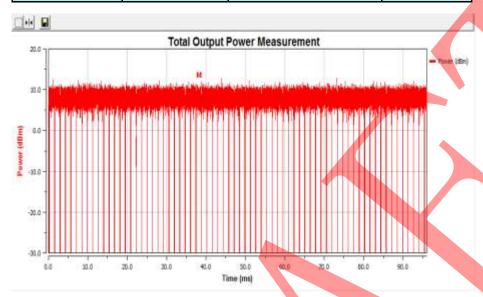
TEST	CONDITIONS		IEEE 802.	11n(40) TRANSMITTER POWER (dBm)			
1531	CONDITIONS	7	Temp (25)°C Temp (-20)°C Temp (55)°C				
CHANNEL	VOL		DC 3.8V	DC 3.8V	DC 3.8V		
CH 03	EIRP		10.49	10.22	10.42		
CH 07	EIRP		10.61	10.44	10.55		
CH 11	EIRP		10.25	10.03	9.99		
	Limit		20dBm				
Measurer	ment uncertainty		+ 0.28dB / - 0.30dB				
	Note		Only the worst case data is reported as below.				

Report No.: AGC01813161203EE05 Page 17 of 68


10*802.11 n40:CH Low-2422: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2422	Normal	9.49	10.49

11*802.11 n40:CH Mid-2442: (Temp - Normal)


Channel	Voltage	Co	onducted Power (dBm)	EIRP (dBm)
CH Mid-2442	Normal		9.61	10.61

Page 18 of 68

12*802.11 n40:CH High-2462: (Temp - Normal)

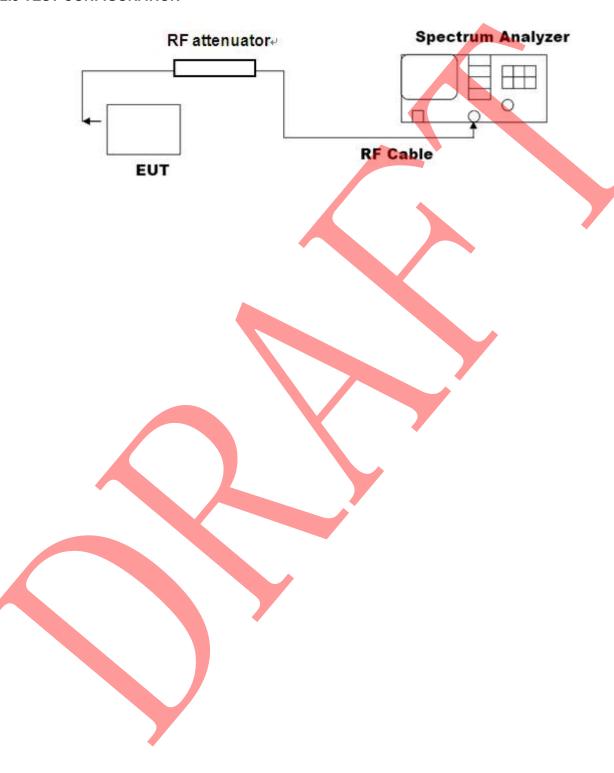
Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2462	Normal	9.25	10.25

Conclusion: PASS

5.2. POWER SPECTRAL DENSITY

5.2.1 **LIMIT**

For non-adaptive equipment using wide band modulations other than FHSS, The maximum Power spectral density is limited to 10mW Per MHz


5.2.2 TEST PROCEDURE

- 1) Set the frequency from 2400MHz to 2483.5MHz, use 10kHz RBW and 30kHz VBW for pre-scan. The number of sweep points shall be more than 8350. Wait for the trace to be completed and save the (trace) data set to a file.
- 2) Add up the values for amplitude (power) for all the samples in the file.
- 3) Normalize the individual values for amplitude so that the sum is equal to the RF Output Power(e.i.r.p) measured in 5.1.
- 4)Starting from the first sample in the file (lowest frequency), add up the power of the following samples representing a 1MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p) for the first 1MHz segment which shall be recorded.
- 5) Shift the start point of the samples added up in step 5 by 1 sample and repeat the procedure in step 4(i.e. sample #2 to #101).
- 6) Repeat step 5 until the end of the data set and record the radiated power spectral Density values for each of the 1MHz segments.
- 7) The cable loss and attenuator factor shall be considered to the test result.

Report No.: AGC01813161203EE05 Page 19 of 68

8) The highest value shall be recorded in the test report.

5.2.3 TEST CONFIGURATION

Page 20 of 68

TEST PROCEDURE

1. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.3.1 for the test conditions.

2. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.3.2 for the measurement method.

3 The equipment setting as following

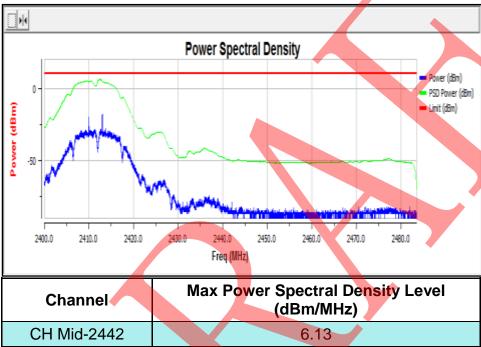
Start Frequency: 2 400 MHz
• Stop Frequency: 2 483,5 MHz

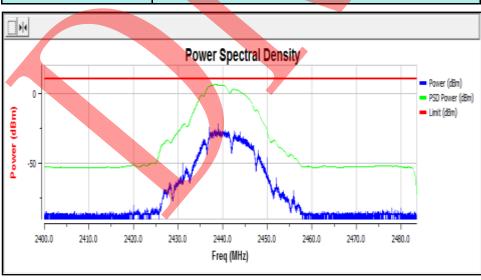
Resolution BW: 10 kHzVideo BW: 30 kHzSweep Points: >8350

Detector: RMS

Trace Mode: Max HoldSweep time: 10s5.2.4 TEST RESULTS

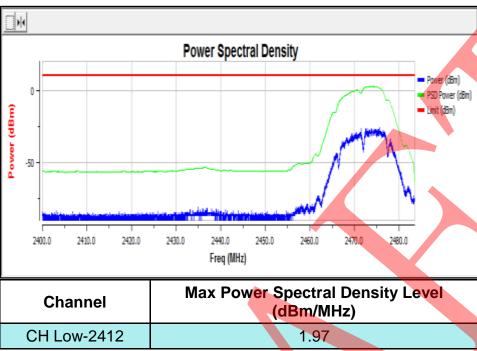
IEEE 802.11b Power Spectral Density			
Channel Tested	Power Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail
CH 01	6.06	10	Pass
CH 07	6.13	10	Pass
CH 13	2.76	10	Pass


IEEE 802.11g Power Spectral Density					
Channel Tested	Pow <mark>er</mark> Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail		
CH 01	1.97	10	Pass		
CH 07	4.12	10	Pass		
CH 13	3.95	10	Pass		

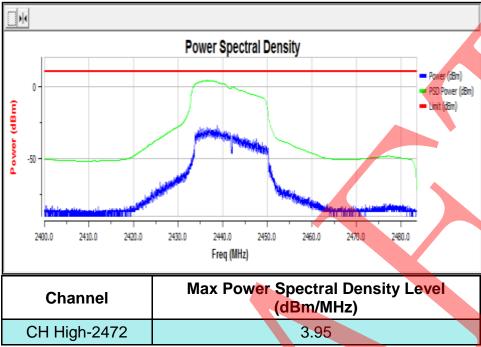

IEEE 802.11n(20) Power Spectral Density				
Channel Tested	Power Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail	
CH 01	2.09	10	Pass	
CH 07	4.14	10	Pass	
CH 13	3.71	10	Pass	

Report No.: AGC01813161203EE05 Page 21 of 68

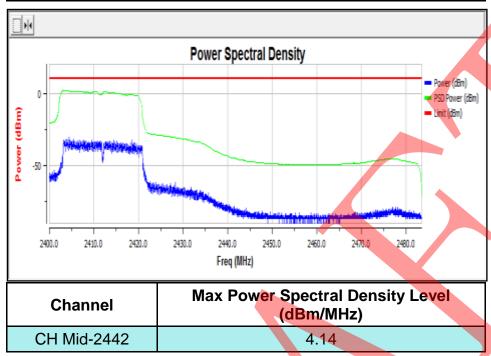
IEEE 802.11n(40) Power Spectral Density					
Channel Tested	Power Density (dBm/MHz)				
CH 03	3.56	10	Pass		
CH 07	-0.59	10	Pass		
CH 11	-1.23	10	Pass		


Channel	Max Power Spectral Density Level (dBm/MHz)	
CH Low-2412	6.06	

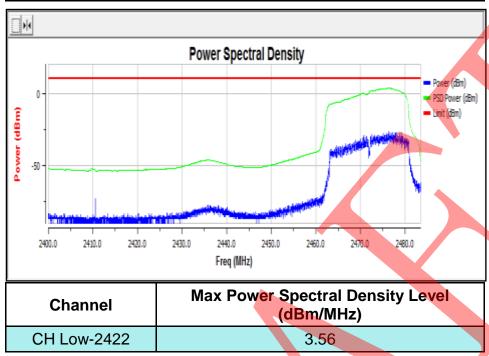
Page 22 of 68

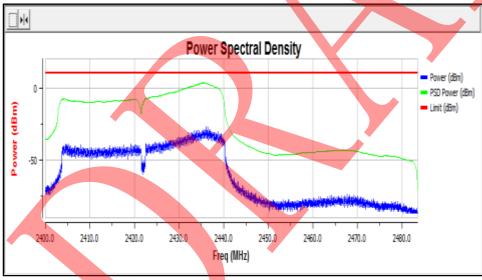

Channel	Max Power Spectral Density Level (dBm/MHz)	
CH High-2472	2.76	

Report No.: AGC01813161203EE05 Page 23 of 68

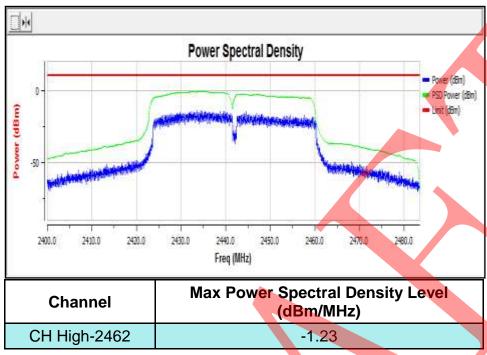

Channel	Max Power Spectral Density Level (dBm/MHz)	
CH Mid-2442	4.12	

Page 24 of 68


Channel	Max Power Spectral Density Level (dBm/MHz)	
CH Low-2412	2.09	



Page 25 of 68


Channel	Max Power Spectral Density Level (dBm/MHz)	
CH High-2472	3.71	

Report No.: AGC01813161203EE05 Page 26 of 68

Channel	Max Power Spectral Density Level (dBm/MHz)
CH Mid-2442	-0.59

Page 27 of 68

5.3. ADAPTIVITY AND RECEIVER BLOCKING

The method of adaptivity is using LBT based DAA

5.3.1 **LIMIT**

The Channel Occupancy Time shall be less than 13ms (the value of q equal to 32 which declared by manufacturer).

If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum duty cycle of 10 % within an observation period of 50 ms.

Table 6: Receiver Blocking parameters

	Equipment Type (LBT / non- LBT)	Wanted signal mean power from companion device	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of interfering signal
	LBT	sufficient to maintain the link (see note 2)	2 395 or 2 488,5 (see note 1)	-35	cw
1	Non-LBT	-30 dBm	(see hote 1)		

NOTE 1: The highest blocking frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest blocking frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.3.7.1.

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

5.3.2 TEST PROCEDURE

- 1) The EuT connect to a companion device during the test. Adjust the received signal level at the EuT to the value of -50dBm/MHz.
- 2) the analyzer shall be set as below: RBW>=Occupied Channel Bandwidth and VBW>=3×RBW.
- 3) Configure the EuT for normal transmission with a sufficiently high payload to allow demonstration of compliance of the adaptive mechanism on the channel being tested.
- 4) Adding the interference signal and blocking signal.
- 5) Record the data.

5.3.3 TEST CONFIGURATION

Page 28 of 68

The analyser shall be set as follows:

- RBW: use next available RBW setting below the measured Occupied Channel Bandwidth

- Filter type: Channel Filter

- VBW: ≥ RBW

- Detector Mode: RMS

- Centre Frequency: Equal to the hopping frequency to be tested

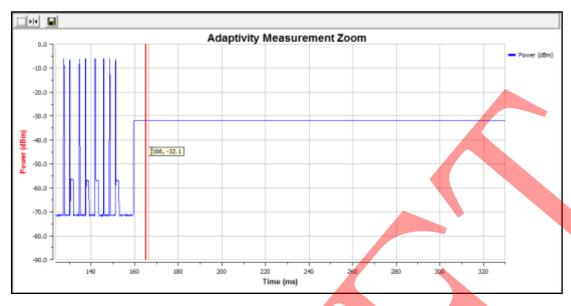
Span: 0 Hz

- Sweep time: > Channel Occupancy Time of the UUT. If the Channel Occupancy Time is non-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out.

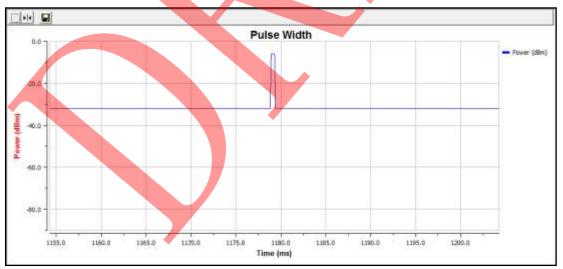
Trace Mode: Clear/WriteTrigger Mode: Video

Report No.: AGC01813161203EE05 Page 29 of 68

5.3.4 TEST RESULTS


Test Channel	802.11b - 2412MHz	
Threshold Level (dBm/MHz)	-63.98	
Blocking Interference Level (dBm)	-35.00	
Traffic Load	36.2%	
Max COT (ms)	1.38	
Idle Time (ms)	2.04	
Pulse width (ms)	0.42	
Duty Cycle (%)		

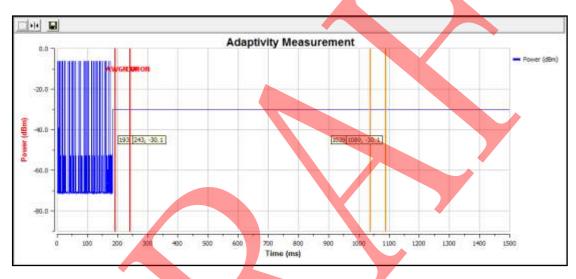
Note: 1)TL = -70 dBm/MHz + 20 - Pout e.i.r.p. (Pout in dBm).

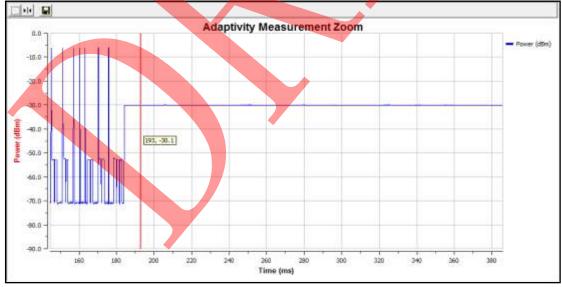

2)The UUT does not resume any normal transmission when adding the blocking signal at the frequency of 2488.5MHZ.It is deemed to comply with the receiver bloking requirement

Report No.: AGC01813161203EE05 Page 30 of 68

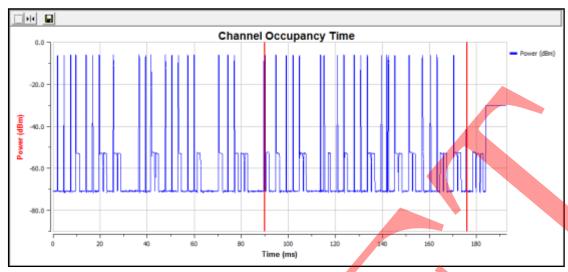


Report No.: AGC01813161203EE05 Page 31 of 68




Report No.: AGC01813161203EE05 Page 32 of 68

Test Channel	802.11b - 2472MHz	
Threshold Level (dBm/MHz)	-60.51	
Blocking Interference Level (dBm)	-35.00	
Traffic Load	36.2%	
Max COT (ms)	0.24	
Idle Time (ms)	0.18	
Pulse width (ms)	0	
Duty Cycle (%)	0.00	


Note: 1)TL = -70 dBm/MHz + 20 - Pout e.i.r.p. (Pout in dBm).

2)The UUT does not resume any normal transmission when adding the blocking signal at the frequency of 2395MHZ.It is deemed to comply with the receiver bloking requirement

Report No.: AGC01813161203EE05 Page 33 of 68

Report No.: AGC01813161203EE05 Page 34 of 68

Note: 1)All the modes had been tested, but only the worst data recorded in the report.2)When removal of the interference and blocking signal the UUT will be transmitting again on this channel.

Conclusion: PASS

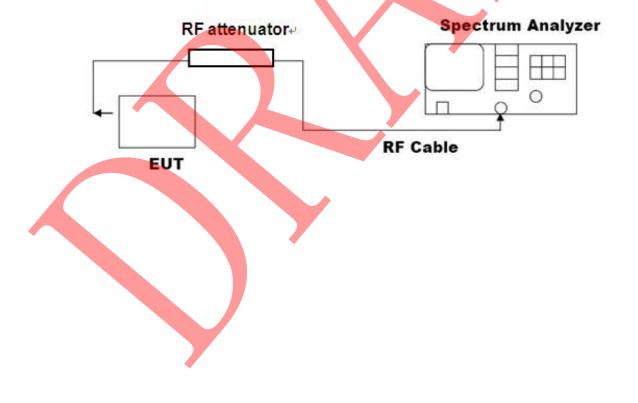
Page 35 of 68

5.4. OCCUPIED CHANNEL BANDWIDTH

5.4.1 LIMIT

The Occupied Channel Bandwidth shall fall completely within the band 2400MHz to 2483.5MHz.

5.4.2 TEST PROCEDURE


The spectrum analyser shall be used the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 %
- Video BW: 3 × RBW
- Frequency Span for frequency hopping equipment: Lowest frequency separation that is used within the hopping sequence
- Frequency Span for other types of equipment: 2 × Nominal Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)

Detector Mode: RMSTrace Mode: Max Hold

• Sweep time: 1 s

5.4.3 TEST CONFIGURATION

Report No.: AGC01813161203EE05 Page 36 of 68

5.4.4 TEST RESULTS

TEST ITEM	99% BANDWIDTH
TEST MODE	802.11b with data rate 11

LIMITS AND MEASUREMENT RESULT					
Appliachle Limite	Applicable Limits				
Applicable Limits	Test Da	ta (MHz)	Criteria		
2400MHz-2483.5MHz	Low Channel	12.479	PASS		
	High Channel	12.392	PASS		

Report No.: AGC01813161203EE05 Page 37 of 68

TEST ITEM	99% BANDWIDTH
TEST MODE	802.11g with data rate 54

LIMITS AND MEASUREMENT RESULT			
Annii abla Limita		Applicable Limits	
Applicable Limits	Test Da	ta (MHz)	Criteria
2400MHz-2483.5MHz	Low Channel	16.993	PASS
	High Channel	16.961	PASS

Report No.: AGC01813161203EE05 Page 38 of 68

TEST ITEM	99% BANDWIDTH	
TEST MODE	802.11n(20) with data rate 65	

LIMITS AND MEASUREMENT RESULT			
Appliachle Limite		Applicable Limits	
Applicable Limits	Test Da	ta (MHz)	Criteria
2400MHz-2483.5MHz	Low Channel	17.832	PASS
	High Channel	17.831	PASS

Report No.: AGC01813161203EE05 Page 39 of 68

TEST ITEM	99% BANDWIDTH	
TEST MODE	802.11n(40) with data rate 135	

LIMITS AND MEASUREMENT RESULT			
Appliachle Limite		Applicable Limits	
Applicable Limits	Test Data (MHz)		Criteria
2400MHz-2483.5MHz	Low Channel	36.494	PASS
	High Channel	36.331	PASS

Page 40 of 68

5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

5.5.1 **LIMIT**

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask.

5.5.2 TEST PROCEDURE

1) The spectrum analyser shall be used the following settings:

- Centre Frequency: 2 484 MHz

Span: 0 HzResolution BW: 1 MHz

- Filter mode: Channel filter

- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep Mode: Continuous

- Sweep Points: Sweep Time [s] / (1 μs) or 5 000 whichever is greater

- Trigger Mode: Video trigger

- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF

Output Power

2) (segment 2 483.5 MHz to 2 483.5 MHz + BW)

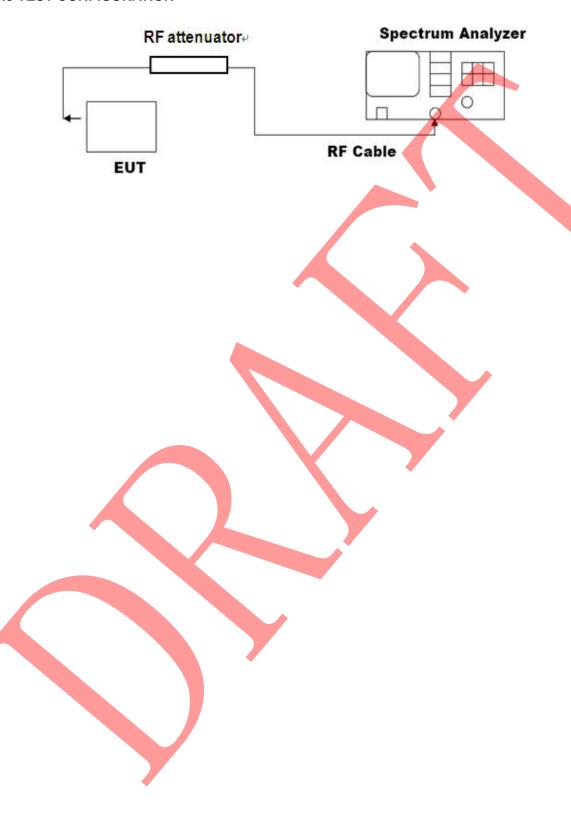
Adjust the trigger level to select the transmissions with the highest power level. Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483.5 MHz to 2 483.5 MHz + BW.

3) Segment 2 483.5 MHz + BW to 2 483.5 MHz + 2BW

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483.5 MHz + BW to 2 483.5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW – 0.5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

4) Segment 2 400 MHz - BW to 2 400 MHz

Change the centre frequency of the analyser to 2 399.5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0.5 MHz. (which means this may partly overlap with the previous 1 MHz segment).


5) Segment 2 400 MHz - 2BW to 2 400 MHz - BW

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0.5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

6) The cable loss and attenuator factor shall be considered to the test result.

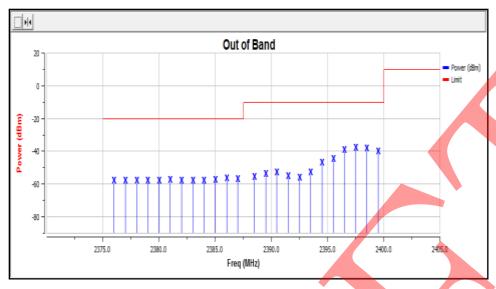
Report No.: AGC01813161203EE05 Page 41 of 68

5.5.3 TEST CONFIGURATION

Page 42 of 68

5.5.4 TEST RESULT

TEGT COMPLTIONS	IEEE 802.11b OUT-OF-BAND DOMAIN		
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C
CHANNEL	DC 3.8V	DC 3.8V	DC 3.8V
Low channel	PASS	PASS	PASS
High channel	PASS	PASS	PASS


TEST CONDITIONS	IEEE 802.11g OUT-OF-BAND DOMAIN		
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C
CHANNEL	DC 3.8V	DC 3.8V	DC 3.8V
Low channel	PASS	PASS	PASS
High channel	PASS	PASS	PASS

TEST CONDITIONS	IEEE 802.11n(20) OUT-OF-BAND DOMAIN		
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C
CHANNEL	DC 3.8V	DC 3.8V	DC 3.8V
Low channel	PASS	PASS	PASS
High channel	PASS	PASS	PASS

TEST CONDITIONS	IEEE	802.11(40) OUT-OF-BAND	DOMAIN
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C
CHANNEL	DC 3.8V	DC 3.8V	DC 3.8V
Low channel	PASS	PASS	PASS
High channel	PASS	PASS	PASS

Report No.: AGC01813161203EE05 Page 43 of 68

CH Low-2412 (802.11b)

CH High-2472 (802.11b)

Note: All the modes had been tested, but only the worst data recorded in the report.

Page 44 of 68

5.6 TRANSMITTER SPURIOUS EMISSIONS

Spurious emissions are emissions outside the frequency range(s) of the equipment as defined

in Clause 4.3.1.10. Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain as indicated in figure 1 when the equipment is in Transmit mode.

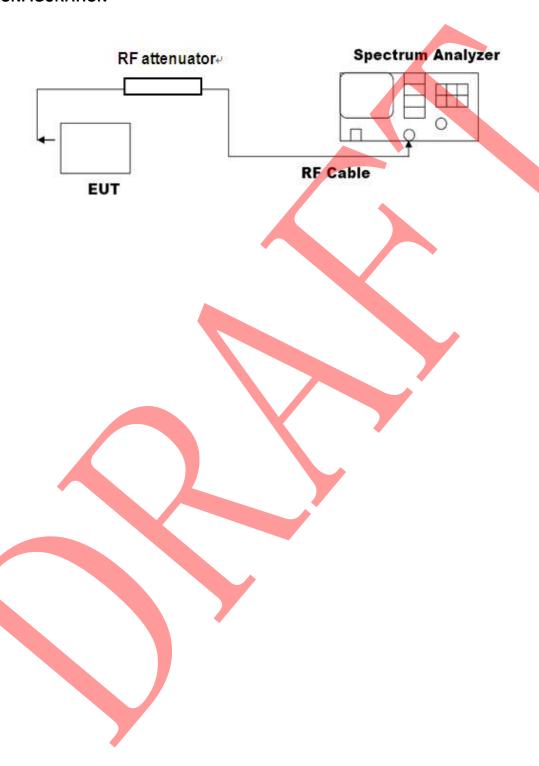
The spurious emissions of the transmitter shall not exceed the values in tables in the indicated bands; Limit

The spanous emissions of the transmit	The spanous emissions of the transmitter shall not exceed the values in tables in the indicated bands. Elimit				
Frequency Range	Maximum Power	Bandwidth			
	e.r.p(<=1GHz)/e.i.r.p(>1GHz)				
30MHZ to 47MHZ	-36dBm	100kHz			
47MHZ to 74MHZ	-54dBm	100kHz			
74MHZ to 87.5MHZ	-36dBm	100kHz			
87.5MHZ to 118MHZ	-54dBm	100kHz			
118MHZ to 174MHZ	-36dBm	100kHz			
174 MHZ to 230MHZ	-54dBm	100kHz			
230 MHZ to 470MHZ	-36dBm	100kHz			
470 MHZ to 862MHZ	-54dBm	100kHz			
862 MHZ to 1GHZ	-36dBm	100kHz			
1 GHZ to 12.75GHZ	-30dBm	1MHz			

Note: In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted) and to the emissions radiated by the cabinet. In case of integral antenna equipment (without temporary antenna connectors), these limits apply to emissions radiated by the equipment.

TEST PROCEDURE

Refer to chapter 5.3.10.2 of ETSI EN 300 328 V1.9.1

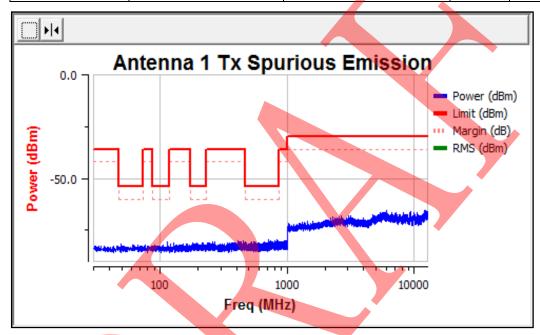

Measurement

		Measurement		
⊠Cond	ucted measu	rement	⊠Radiated measurement	

Report No.: AGC01813161203EE05 Page 45 of 68

CONDUCTED MEASUREMENT

TEST CONFIGURATION

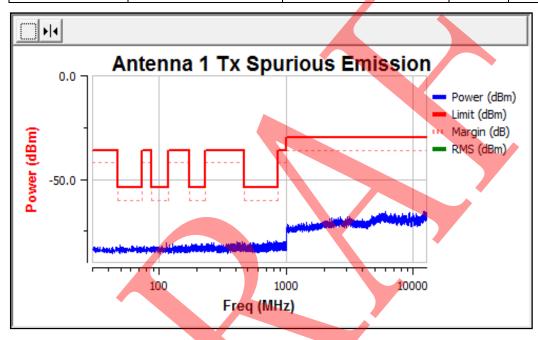

Page 46 of 68

TEST RESULT

(Worst Case: Low channel, 11B)

Channel	Peak Result	RMS Result	
CH Low-2412	Pass	-	

Freq	RMS Level (dBm)	Limit (dBm)	Over Limit (dB)	Status
835.090	-79.16	-54.00	-25.16	Pass
835.188	-79.05	-54.00	-25.05	Pass
12151.000	-64.84	-30.00	-34.84	Pass
12342.000	-64.84	-30.00	-34.84	Pass



Page 47 of 68

(Worst Case: High channel, 11B)

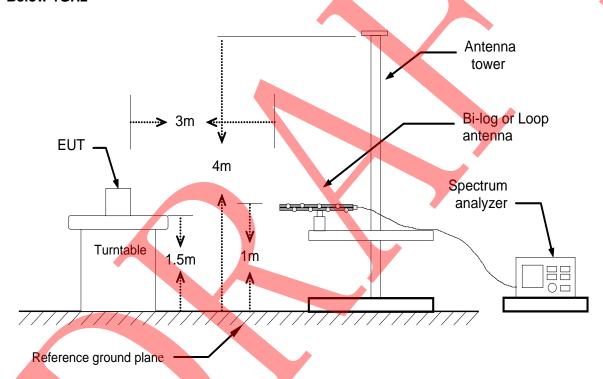
Channel	Peak Result	RMS Result
CH High-2472	Pass	-

Freq	RMS Level (dBm)	Limit (dBm)	Over Limit (dB)	Status
820.205	-79.13	-54.00	-25.13	Pass
835.090	-79.16	-54.00	-25.16	Pass
12092.000	-64.76	-30.00	-34.76	Pass
12097.000	-64.81	-30.00	-34.81	Pass

Note: 1. All the modes had been test but only the worst data record in the report.

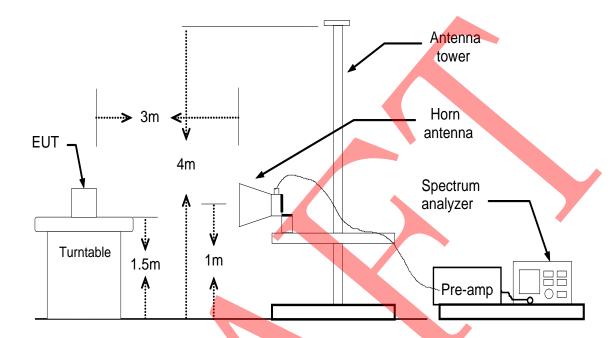
- 2.The 2.4G fundamental frequency is filtered out.
- 3. The effective radiated power has been considered in this test.

Conclusion: PASS


Report No.: AGC01813161203EE05 Page 48 of 68

RADIATED MEASUREMENT

TEST SETUP


- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- 3. The equipment was configured to operate under its worst case situation with respect to output power.
- 4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Below 1GHz

Report No.: AGC01813161203EE05 Page 49 of 68

Above 1GHz

Radiated Method

Page 50 of 68

TEST RESULTS for Radiated Method

Transmitter Operating Mode (Worst case: 11B)

SPURIOUS EMISSION FREQUENCY RANGE	30MHz	~ 1GHz	OPERATING	CHANNEL	Low
Frequency (MHz)		Antenna Polarization	Level (dBm)	Limit (dB	m) Margin (dB)
44.6		Н	-64.19	-36	-28.19
66.93		Н	-70.41	-54	-16.41
148.55		Н	-65.08	-36	-29.08
326.81		Н	-70.87	-36	-34.87
716.4		Н	-67.16	-54	-13.16
887		Н	-63.93	-36	-27.93
57.99		V	-68.69	-54	-14.69
190.82		V	-69.64	-54	-15.64
128.79		V	-64.44	-36	-2 8.44
177.03		V	-67.76	-54	-13.76
323.62		V	-71.39	-36	-35.39
942.4		V	-62.52	-36	-26.52
30MHz ~ 1GHz		Н		-36	>10
30MHz ~ 1GHz		V		-36	>10
30MHz ~ 1GHz		Ŧ		-54	>10
30MHz ~ 1GHz		V		-54	>10

NOTE: 1.The emission behavior belongs to narrowband spurious emission.

^{2.} The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Page 51 of 68

SPURIOUS EMISSION FREQUENCY RANGE	30MHz	~ 1GHz	OPERATING	CHANNEL	High	
Frequency (MHz)		Antenna Polarization	Level (dBm)	Limit (dE	Bm)	Margin (dB)
45.82		Н	-63.33	-36		-27.33
66.95		Н	-70.55	-54		-16.55
135.79		Н	-61.35	-36		-25.35
371.35		Н	-73.27	-36		-37.27
724.02		Н	-66.58	-54		-12.58
950.85		Н	-65.02	-36		-29.02
58.85		V	-71.01	-54		-17.01
208.66		V	-68.63	-54		-14.63
122.41		V	-62.95	-36		-26.95
203.24		V	-67.1	-54		-13.1
451.04		V	-73.07	-36		-37.07
979.34		V	-62.45	-36		-26.45
30MHz ~ 1GHz		Н		-36		>10
30MHz ~ 1GHz		V		-36		>10
30MHz ~ 1GHz		Н		-54		>10
30MHz ~ 1GHz		V		-54		>10

NOTE: 1.The emission behavior belongs to narrowband spurious emission.

2. The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Standby Mode:

NO.	Frequency	Measurement Bandwidth	Level	Limit	Margin	
	MHz	KHz	dBm	dBm	dB	
Standby Mo	Standby Mode ,Antenna Polarization: Vertical					
1	30-1000	100	\	-54	>20	
2	30-1000	100	\	-36	>20	
Standby Mo	Standby Mode ,Antenna Polarization: Horizontal					
1	30-1000	100	\	-54	>20	
2	30-1000	100	\	-36	>20	

Conclusion: PASS

Report No.: AGC01813161203EE05 Page 52 of 68

Above 1GHz (1GHz-12.75GHz)

NO	Frequency	Measurement Bandwidth	Level	Limit	Margin
NO.	MHz	KHz	EIRP	dBm	dB
TX:2412N	IHz ,Antenna Polarizatio	n: Vertical			
1	4824	1000	-52.43	-30	>10
2	7236	1000	-54.50	-30	>10
3	9648	1000	1	-30	>40
4	12060	1000		-30	>40
5	Other(1000-12750)	1000	\	-30	>40
TX:2412N	IHz ,Antenna Polarizatio	n: Horizontal			
1	4824	1000	-55.60	-30	>10
2	7236	1000	-56.78	-30	>10
3	9648	1000	١	-30	>40
4	12060	1000	1	-30	>40
5	Other(1000-12750)	1000	1	-30	>40
TX:2442N	IHz ,Antenna Polarizatio	n: Vertical			
1	4884	1000	-53.34	-30	>10
2	7326	1000	-57.66	-30	>10
3	9768	1000	\	-30	>40
4	12210	1000	\	-30	>40
5	Other(1000-12750)	1000	\	-30	>40
TX:2442N	IHz ,Antenna Polarizatio	n: Horizontal			
1	4884	1000	-55.79	-30	>10
2	7326	1000	-51.40	-30	>10
3	9768	1000	\	-30	>40
4	12210	1000	\	-30	>40
5	Other(1000-12750)	1000	\	-30	>40
TX:2472N	IHz ,Ante <mark>nna</mark> Polarizatio	n: Vertical			
1	4944	1000	-53.30	-30	>10
2	7416	1000	-55.22	-30	>10
3	9888	1000	\	-30	>40

Report No.: AGC01813161203EE05 Page 53 of 68

4	12360	1000	\	-30	>40	
5	Other(1000-12750)	1000	\	-30	>40	
TX:2472M	TX:2472MHz ,Antenna Polarization: Horizontal					
1	4944	1000	-54.15	-30	>10	
2	7416	1000	-56.24	-30	>10	
3	9888	1000	1	-30	>40	
4	12360	1000	1	-30	>40	
5	Other(1000-12750)	1000		-30	>40	
Measurem	Measurement uncertainty:±3.2dB					

Standby Mode:

	1	- Claire of Incase					
NO.	Frequency	Measurement Bandwidth	Level	Limit	Margin		
	MHz	KHz	dBm	dBm	dB		
Standby M	Standby Mode ,Antenna Polarization: Vertical						
1	1000-12750	1000	1	-30	>20		
Standby Mode ,Antenna Polarization: Horizontal							
1	1000-12750	1000		-30	>20		

Conclusion: PASS

Page 54 of 68

5.7 RECEIVER SPURIOUS EMISSIONS

The level of spurious emissions shall be measured as, either:

- a) Their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or
- b) Their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no temporary antenna connectors.

Testing shall be performed when the equipment is in a receive-only mode.

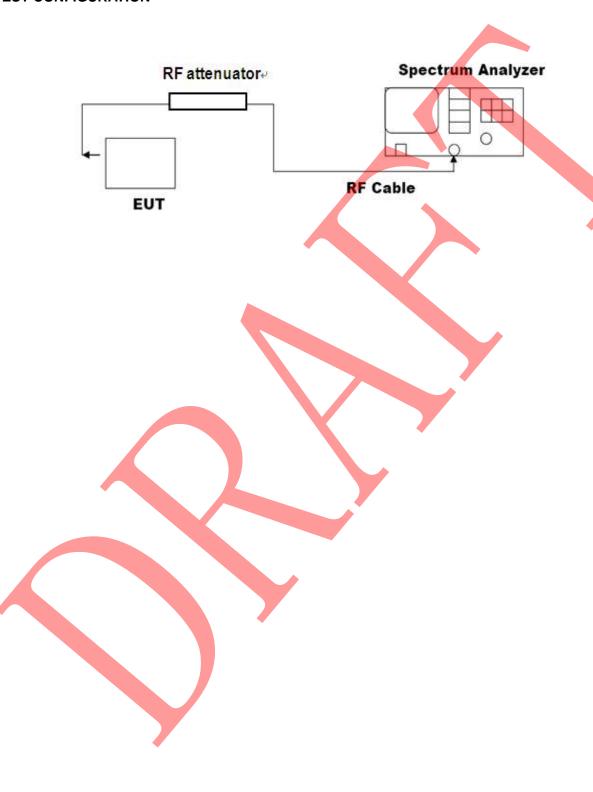
LIMIT

Frequency range	Maximum power, e.r.p.	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

Note: In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted) and to the emissions radiated by the cabinet. In case of integral antenna equipment (without temporary antenna connectors), these limits apply to emissions radiated by the equipment.

TEST PROCEDURE

Refer to chapter 5.3.11.2 of ETSI EN 300 328 V1.9.1

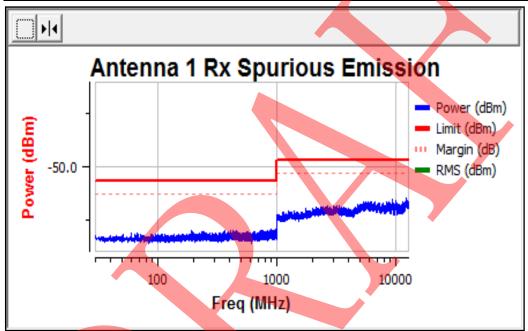

Measurement

Measure	men	nt
⊠Conducted measurement		⊠Radiated measurement

Report No.: AGC01813161203EE05 Page 55 of 68

CONDUCTED MEASUREMENT

TEST CONFIGURATION

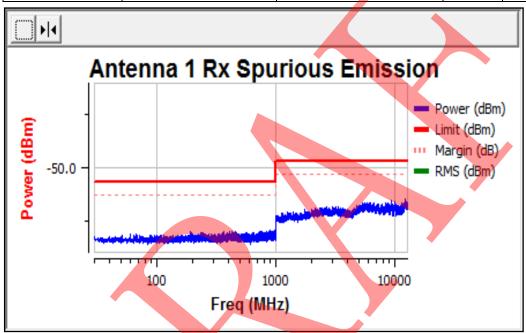

Page 56 of 68

TEST RESULT

(Worst Case: Low channel, 11B)

Channel	Peak Result	RMS Result
CH Low-2412	Pass	

Freq	RMS Level (dBm)	Limit (dBm)	Over Limit	Status
737.117	-79.33	-57.00	(dB) -22.33	Pass
878.969	-79.34	-57.00	-22.34	Pass
9356.000	-65.21	-47.00	-18.21	Pass
12170.000	-65.21	-47.00	-18.21	Pass



Report No.: AGC01813161203EE05 Page 57 of 68

(Worst Case: High channel, 11B)

Channel	Peak Result	RMS Result
CH High-2472	Pass	-

Freq	RMS Level (dBm)	Limit (dBm)	Over Limit (dB)	Status
804.346	-78.97	-57.00	-21.97	Pass
804.443	-78.88	-57.00	-21.88	Pass
12198.000	-63.95	-47.00	-16.95	Pass
12323.000	-65.21	-47.00	-18.21	Pass

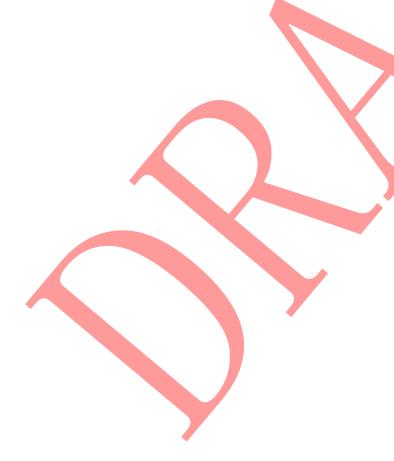
Note: 1. All the modes had been test but only the worst data record in the report.

2. The effective radiated power has been considered in this test.

Conclusion: PASS

Page 58 of 68

RADIATED MEASUREMENT


TEST SETUP

For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).

- 2 Testing was performed when the equipment was in a receive-only mode.
- 3 The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.
- The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

TEST CONFIGURATION

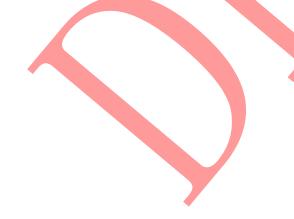
Radiated Method: Same as section 4.6 in this test report

Page 59 of 68

TEST RESULTS for Radiated Method (Worst case: 11B)

Low Channel: Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
84.2	30.14	V	-69.1	0.13	0.48	-68.75	-57	-11.75
129.35	30.26	V	-70.21	0.22	0.26	-70.17	-57	-13.17
239.22	30.67	V	-69.95	0.28	0.37	-69.86	-57	-12.86
325.31	29.95	V	-71.05	0.37	0.68	-70.74	-57	-13.74
334.15	30.84	V	-70.19	0.41	0.15	-70.45	-57	-13.45
827.14	31.26	V	-71.17	0.51	1.18	-70.5	-57	-13.5
83.4	30.86	Н	-69.46	0.1	0.07	-69.49	-57	-12.49
130.62	30.98	Н	-69.99	0.23	0.65	-69.57	-57	-12.57
242.33	30.82	Н	-70.36	0.3	0.61	-70.05	-57	-13.05
325.2	30.77	Н	-69.61	0.36	1.05	-68.92	-57	-11.92
734.41	30.92	Н	-69.37	0.44	0.75	-69.06	-57	-12.06
827.08	30.56	Н	-71.13	0.5	0.95	-70.68	-57	-13.68
30MHz ~ 1GHz		V		-			-57	>10
30MHz ~ 1GHz		Н					-57	>10


Note: The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Page 60 of 68

High Channel: Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
84.39	30.14	V	-69.1	0.14	0.48	-68.76	-57	-11.76
129.56	30.26	V	-70.21	0.23	0.26	-70.18	-57	-13.18
239.84	30.67	V	-69.95	0.29	0.37	-69.87	-57	-12.87
325.91	29.95	V	-71.05	0.4	0.68	-70.77	-57	-13.77
334.33	30.84	V	-70.19	0.42	0.15	-70.46	-57	-13.46
827.8	31.26	V	-71.17	0.56	1.18	-70.55	-57	-13.55
83.51	30.86	Н	-69.46	0.11	0.07	-69.5	-57	-12.5
130.74	30.98	Н	-69.99	0.24	0.65	-69.58	-57	-12.58
242.69	30.82	Н	-70.36	0.31	0.61	-70.06	-57	-13.06
325.78	30.77	Н	-69.61	0.39	1.05	-68.95	-57	-11.95
734.55	30.92	Н	-69.37	0.45	0.75	-6 9.07	-57	-12.07
827.61	30.56	Н	-71.13	0.55	0.95	-70.73	-57	-13.73
30MHz ~ 1GHz		V					-57	>10
30MHz ~ 1GHz		Н					-57	>10

Note: The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Page 61 of 68

Low Channel: Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1954.15	39.77	V	-62.69	2.01	0.52	-64.18	-47	-17.18
		V						
		V			4			
		V						
		V						
		V						
2443.11	39.04	Н	-62.62	1.88	0.71	-63.79	-47	-16.79
		Н			-			
		Н						
		Н	-					
		Н						
		Н						
1GHz-12.75 GHz		V		-			-47	>10
1GHz-12.75 GHz		Н					-47	>10

Note: The margins of the other spectrum above 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Page 62 of 68

High Channel: Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1954.87	39.77	V	-62.69	2.1	0.52	-64.27	-47	-17.27
		V						
		V			-			
		V						
		V			-			•
		V						
2443.69	39.04	Н	-62.62	1.96	0.71	-63.87	-47	-16.87
		Н			-	1		1
		Н	-		1	-		
		Н	-					
		Н		-				
		Н			1			
1GHz-12.75 GHz		V		-		1	-47	>10
1GHz-12.75 GHz		Н				-	-47	>10

Note: The margins of the other spectrum above 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Remarks:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Conclusion: PASS

Report No.: AGC01813161203EE05 Page 63 of 68

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

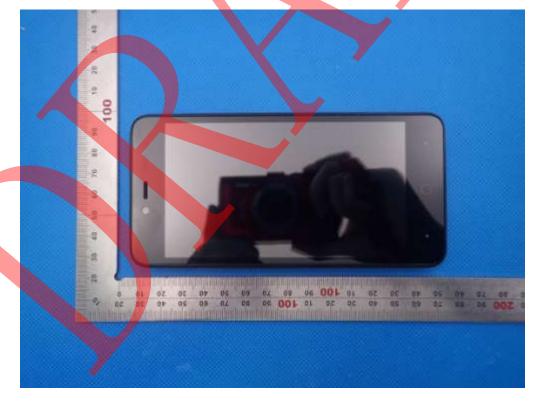
RADIATED SPURIOUS EMISSION TEST SETUP

Page 64 of 68

APPENDIX B: PHOTOGRAPHS OF EUT

All VIEW OF EUT

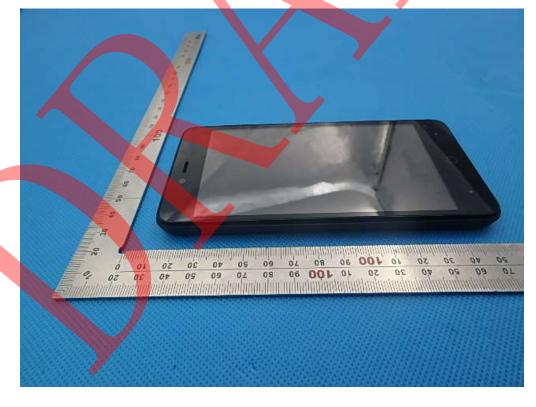
TOP VIEW OF EUT



Report No.: AGC01813161203EE05 Page 65 of 68

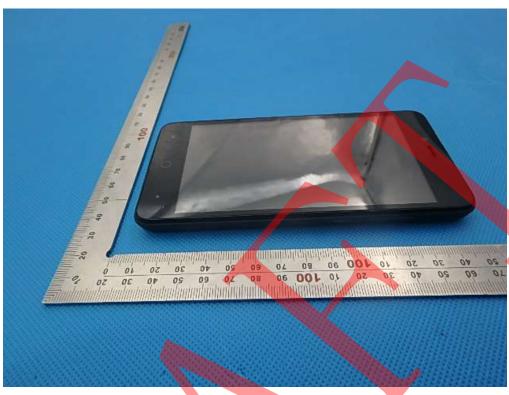
BOTTOM VIEW OF EUT

FRONT VIEW OF EUT



Report No.: AGC01813161203EE05 Page 66 of 68

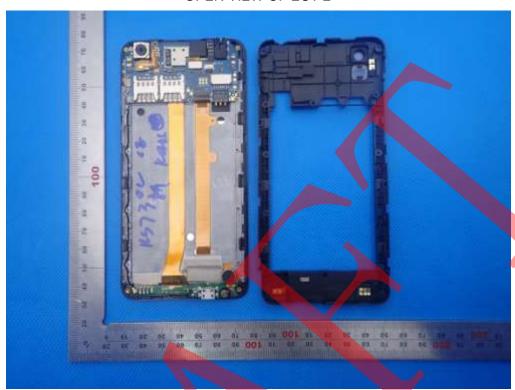
BACK VIEW OF EUT



LEFT VIEW OF EUT

Report No.: AGC01813161203EE05 Page 67 of 68

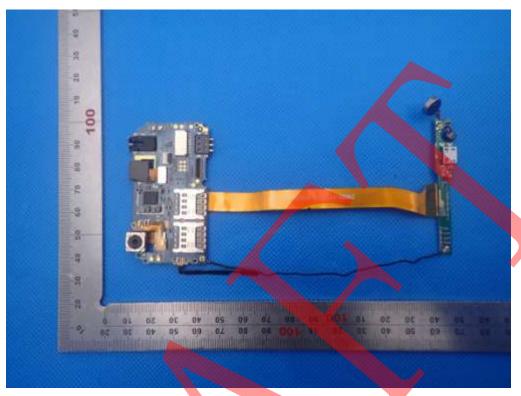
RIGHT VIEW OF EUT



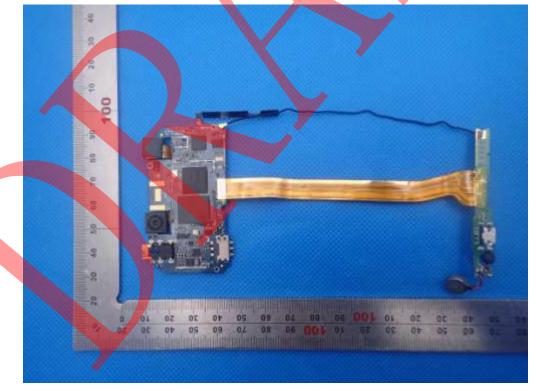
OPEN VIEW OF EUT-1

Report No.: AGC01813161203EE05 Page 68 of 68

OPEN VIEW OF EUT-2



OPEN VIEW OF EUT-3



Report No.: AGC01813161203EE05 Page 69 of 68

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

----END OF REPORT----