

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Dec. 30, 2016	Valid	Original Report

Report Revise Record

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	
2. GENERAL INFORMATION	. 5
2.1. DESCRIPTION OF EUT	5
2.2. OBJECTIVE	6
2.3. TEST STANDARDS AND RESULTS	7
2.4. TEST ITEMS AND THE RESULTS	8
2.5. ENVIRONMENTAL CONDITIONS	8
3. TEST MODE DESCRIPTION	
4. MEASUREMENT UNCERTAINTY	
5. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	10
6. EMISSION TEST	12
6.1. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT	12
6.2. RADIATED DISTURBANCE MEASUREMENT	16
6.3. HARMONIC CURRENT MEASUREMENT	23
6.4. VOLTAGE FLUCTUATIONS AND FLICK MEASUREMENT	
7. IMMUNITY TEST	
7.1. EUT SETUP AND OPERATING CONDITIONS	27
7.2. GENERAL PERFORMANCE CRITERIA	27
7.3. ELECTROSTATIC DISCHARGE IMMUNITY TEST	32
7.4. RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TEST	38
7.5. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	44
7.6. SURGE IMMUNITY TEST	47
7.7. IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS	50
7.8. VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST	55
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	63

Applicant	Vonino ELectronics LTD					
Address	Miramar Tower 10F- No.1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong					
Manufacturer	Gui zhou Fortuneship Technology Co., Ltd					
Address	No. 4 Plant, High-tech Industrial Park, Xinpu Economic Development Zone) Jingkai Road, Xinpu Jingkai District, Xinpu New District, Zunyi City, Guizhou Province, P. R. China					
Product Designation	3G Dual-SIM Smartphone					
Brand Name	vonino					
Test Model	Volt S					
Date of test	Dec. 15, 2016 to Dec. 22, 2016					
Deviation	None					
Condition of Test Sample	Normal					
Report Template	AGCRT-EC-3G2/EMC					

1. TEST REPORT CERTIFICATION

We, Attestation of Global Compliance (Shenzhen) Co., Ltd., hereby certify that the submitted samples of the above item, as detailed in chapter 2.1 of this report, has been tested in our facility. The test record, data evaluation and test configuration represented herein are true and accurate accounts of measurements of the sample's EMC characteristics under the conditions herein specified.

2. GENERAL INFORMATION

2.1. DESCRIPTION OF EUT

Details of technical specification refer to the description in follows:

EUT 1–3G Dual-SIM Smartphone									
Brand Name	vonino								
Test Model	Volt S								
Hardware Version	ZH066-MB-V3.0								
Software Version	N/A								
GPRS Class	Class 12								
Radio parts supported	GSM DUMTS LTE GPS BLUETOOTH WIFI NFC								
	EUT 2–AC/DC Adapter								
Brand Name	vonino								
Test Model	VNA-V50JS								
Manufacturer Name	Shenzhen Jingrichang Electronics Technology Co., Ltd								
Manufacturer Address	4 Liaokeng Rd Shiyan Town, Baoan District SHENZHEN GUANGDONG CHINA								
Rated Input	AC100V-240V, 50/60Hz, 0.15A								
Rated Output	DC5.0V,1000mA								
	EUT 3-Li-ion Battery								
Brand Name	vonino								
Test Model	VBSVS-01								
Manufacturer Name	Shenzhen Season Energy Co.,Ltd								
Manufacturer Address	NO.101 · Block B, Tongle Scientific Park, Banlong 5th Street,								
	Longgang ,Shenzhen City,Guangdong Province								
Capacitance	4000mAh								
Rated Voltage	DC3.8V								
Charging Voltage	DC4.35V								

Note:

- 1. The EUT consists of hand telephone set, li-ion battery, USB cable, charger and earphone.
- 2. The Phone has dual-SIM card slots, but only one of the card can be transmitting when the two cards are inserting the phone together. Anyone of the SIM Card socket was tested.
- 3. Please refer to Appendix I for the photographs of the EUT. For a more detailed features description about the EUT, please refer to User's Manual.

2.2. OBJECTIVE

Perform Electro Magnetic Interference (EMI) and Electro Magnetic Susceptibility (EMS) tests for CE Marking.

2.3. TEST STANDARDS AND RESULTS

The EUT has been tested according to ETSI EN 301 489-1 V1.9.2: 2011-09; ETSI EN 301 489-3 V1.6.1: 2013-08; ETSI EN 301 489-7 V1.3.1: 2005-11; ETSI EN 301 489-17 V2.2.1: 2012-09; ETSI EN 301 489 -24 V1.5.1 2010-10.

	Electromagnetic compatibility and Radio spectrum Matters (ERM); Electro						
ETSI EN 301 489-1	Magnetic Compatibility (EMC) standard for radio equipment and services;						
	Part 1: Common technical requirements						
	Electromagnetic compatibility and Radio spectrum Matters (ERM);						
ETSI EN 301 489-3	Electromagnetic Compatibility (EMC) standard for radio equipment and services;						
E131 EN 301 405-3	Part 3: Specific conditions for Short-Range Devices (SRD) operating on						
	frequencies between 9 kHz and 246 GHz						
	Electromagnetic compatibility and Radio spectrum Matters (ERM); Electro						
ETSI EN 301 489-7	Magnetic Compatibility (EMC) standard for radio equipment and services;						
E131 EN 301 405-7	Part 7: Specific conditions for mobile and portable radio and ancillary equipment						
	of digital cellular radio telecommunications systems (GSM and DCS)						
	Electromagnetic compatibility and Radio spectrum Matters (ERM);						
ETSI EN 301 489-17	Electromagnetic Compatibility (EMC) standard for radio equipment Part 17:						
	Specific conditions for Broadband Data Transmission Systems						
	Electromagnetic compatibility and Radio spectrum Matters (ERM);						
ETSI EN 301 489-24	Electromagnetic Compatibility (EMC) standard for radio equipment and services;						
	Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA and						
	E-UTRA) for Mobile and portable (UE) radio and ancillary equipment						

2.4. TEST ITEMS AND THE RESULTS

No.	Basic Standard	Test Type	Result							
EMIS	EMISSION (EN 301 489-1 §7.1)									
1	EN 55022	Radiated emission	PASS							
2	EN 55022	Conducted emission, DC ports	N/A							
3	EN 55022	Conducted emission, AC ports	PASS							
4	EN 55022	Conducted emission, Telecom ports	N/A							
5	EN 61000-3-2	Harmonic current emissions	N/A							
6	EN 61000-3-3	Voltage fluctuations & flicker	PASS							
IMM	UNITY (EN 301 489-1	§7.2)	V							
7	EN 61000-4-2	Electrostatic discharge immunity	PASS							
8	EN 61000-4-3	Radiated RF electromagnetic field immunity	PASS							
9	EN 61000-4-4	Electrical fast transient/burst immunity	PASS							
10	ISO 7637-1, -2	Transients and surges, DC ports	N/A							
11	EN 61000-4-5	Surge immunity, AC ports, Telecom ports	PASS							
12	EN 61000-4-6	Immunity to conducted disturbances induced by RF fields	PASS							
13	EN 61000-4-11	Voltage dips and short interruptions immunity	PASS							

Note:

1. N/A- Not Applicable.

2. The latest versions of basic standards are applied.

2.5. ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. TEST MODE DESCRIPTION

Specification C: UMTS 2100						

recorded in the report.

4. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

- Uncertainty of Conducted Emission, $Uc = \pm 2.75 dB$

- Uncertainty of Radiated Emission, $Uc = \pm 3.2 dB$

5. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd					
Location-1	2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu,					
Location-1	Xixiang, Bao'an District, Shenzhen, Guangdong, China					
Location-2	B112-B113, Building 12, Baoan Building Materials Center, No.1 of Xixiang Inner					
Location-2	Ring Road, Baoan District, Shenzhen, Guangdong, P.R.China					
Note: The test items RS&CS were tested in the Laboratory of Location 2. Others were tested in the						
Laboratory of Location 1.						

LIST OF EQUIPMENTS USED OF AGC

Description	Manufacturer	Model No.	S/N	Calibration Date	Calibration Due.
Universal Radio Communication Tester	R&S	CMU200	120237	Feb.29,2016	Feb.28,2017
Wireless Communication Test Set	AGILENT	8960	GB46200384	July 18,2016	July 17,2017
VECTOR ANALYZER	AGILENT	E4440A	MY44303916	July 02,2016	July 01,2017
EMI Test Receiver	R&S	ESCI	100694	July 02,2016	July 01,2017
LISN	R&S	ESH2-Z5	100086	Aug.25,2016	Aug.24,2017
WIDEBAND REQUENCY ANTENNA	SCHWARZBECK	VULB9168	VULB9168-494	Mar.12,2016	Mar.11,2017
Horn Antenna	EM	EM-AH-10180	67	Mar.01,2016	Feb.28,2017
ESD Generator	EM	DITO	P1527160053	Jan.19,2016	Jan.18,2017
Electrical Fast Transient Burst Generator	LIONCEL	EFT-404B	EFT04401011	July 02,2016	July 01,2017
Lightning Surge Generator	LIONCEL	LSG-506A	LSG056001010	July 02,2016	July 01,2017
Voltage Dip Immunity Test Generator	LIONCEL	VDS-1120D	VSD11200901	Feb.29,2016	Feb.28,2017
Harmonic Emission Flicker Test System	LAPLACE	AC2000A	377951	Feb.29,2016	Feb.28,2017
Signal Generator	AGILENT	N5182A	MY50140530	Oct.10, 2016	Oct.09,2017
Amplifier	EM	EM30180	060552	Feb.29,2016	Feb.28,2017
GSM 900&UMTS VIII Reject	MICRO-TRONIC S	BRC50718	-010	Feb.29,2016	Feb.28,2017
GSM 1800&UMTS III	MICRO-TRONIC	BRC50719	-009	Feb.29,2016	Feb.28,2017

Report No.: AGC01813161203EE01 Page 11 of 68

Reject	S										
UMTSI Reject	MICRO-TRO S	MICRO-TRONIC S BRC50		-008			Feb.29,20 ⁻	16	Feb.28,2017		
TEST EQUIPMENT C	OFCS & RS IMM		TEST								
Description	Manufacturer	N	Iodel	S/N Cal. Date			al. Date	Cal. Due			
Biconilog Antenna	EMCO	3	3142C	0	00060447 N		Mar.01,2016		eb.28,2017		
Power Probe	R&S	UF	RV5-Z4		100124	Jul	y 0 <mark>3,2</mark> 016	J	uly 02,2017		
Power Meter	R&S	1	NRVD	83	23781027	Jul	y 04,2016	J	uly 03,2017		
Power Amplifier	KALMUS	7	100LC	04-0	2/17-06-001	Jul	y.01,2016	Ju	une.31,2017		
RF Amplifier	Milmega	AS01	04-55_55	1	1004793	Jul	y.01,2016	Jų	ne.31,2017		
Power Amplifier	AR	7	5A250		18464	Jul	y.01,2016	Ju	une.31,2017		
CDN	Schaffner		M016		21264	Au	g.25,2016	А	ug.24,2017		
6dB attenuator	JFW	50FH	IC-006-50		5N-20 Fe		o.29,2016	F	eb.28,2017		
Electromagnetic Injection Clamp	Luthi	E	M101		35773	Aug.25,2016		Aug.24,2017			
Signal Generator	R&S	S	SML01		104228	Jun	June 30,2016		May 31,2017		
Directional Coupler	Werlatone	C5	5571-10		99463	July.01,2016		June.31,2017			
Directional Coupler	Werlatone	Ce	6026-10		99482	July.01,2016		June.31,2017			
Audio Power Amplifier	B&K	271	6-C-001	2	2647129	Jul	y.01,2016	June.31,2017			
Conditioning Amplifier	B&K	26	90-OS2	2	2654235	Jul	y.01,2016	Jı	une.31,2017		
Microphone	B&K		4192	2	6488641	Jul	y.01,2016	Ju	une.31,2017		
Probe Microphone	B&K		4182	2	2647123	Jul	y.01,2016	Jı	une.31,2017		
Sound Calibrator	B&K		4231	2	2656617	Jul	y.01,2016	.01,2016 June.31,2017			
Mouth Simulator	B&K		4227	2	2659578	Jul	y.01,2016	Jı	une.31,2017		
Telephone Test Head	B&K	2	1206B	2	2663112		2663112 July.01,		y.01,2016	Ju	une.31,2017
Audio Analyzer	R&S		UPV		101196	Jul	y.18,2016	J	uly.17,2017		
Wireless Communication Test Set	AGILENT		8960	GE	342361316	Ma	ır.01,2016	F	eb.28,2017		

6. EMISSION TEST

6.1. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT

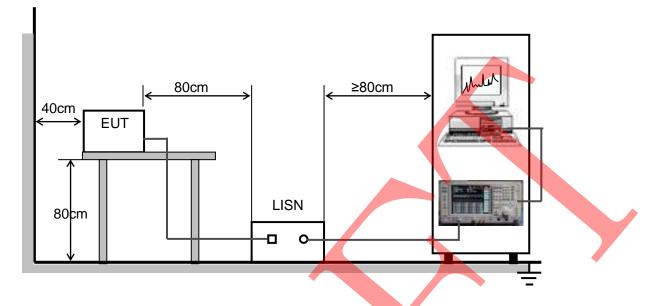
6.1.1 LIMITS OF MAINS TERMINAL DISTURBANCE VOLTAGE

	Limits (dBuV), Class B ITE						
Frequency range (MHz)	Quasi-peak	Average					
0.15 - 0.50	66 to 56	56 to 46					
0.50 - 5	56	46					
5 - 30	60	50					

Note:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

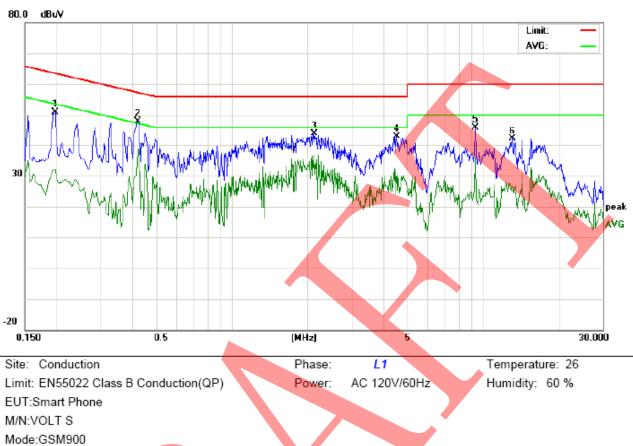

6.1.2 TEST PROCEDURE

1. The EUT was placed 0.4 meters from the conducting wall of shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provide $50\Omega/50\mu$ H of coupling impedance for the measuring instrument.

2. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.

3. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 20dB under the prescribed limits are not reported.

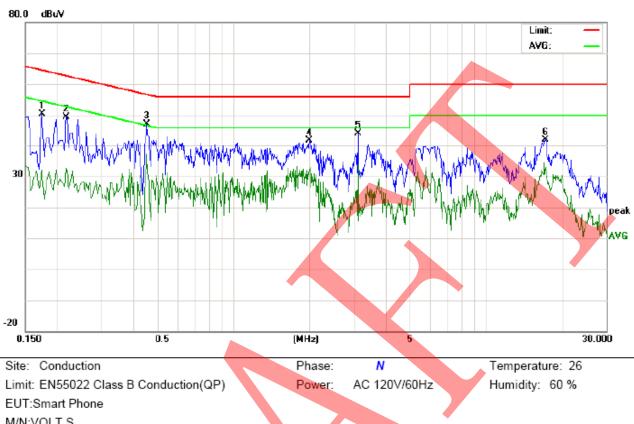
6.1.3 TEST SETUP



For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

6.1.4 TEST RESULT

All test modes were carried out for all operation modes


The worst test data (Specification A GSM 900 of mode 1) was showed as the follow:

LINE CONDUCTED EMISSION TEST-L

Note:

No.	Freq.				Correct F <mark>act</mark> or		asuren (dBuV)			nit uV)	Mai (d	rgin IB)	P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1980	40.62		21.79	10.21	50.83		32.00	63.69	53.69	-12.86	-21.69	Р	
2	0.4220	37.48		28.18	10.35	47.83		38.53	57.41	47.41	-9.58	-8.88	Р	
3	2.1340	33.57		26.29	10.28	43.85		36.57	56.00	46.00	-12.15	-9.43	Р	
4	4.5459	32.58		19.42	10.21	42.79		29.63	56.00	46.00	-13.21	-16.37	Р	
5	9.3299	35.44		25.62	10.32	45.76		35.94	60.00	50.00	-14.24	-14.06	Р	
6	13.0979	32.03		16.77	10.14	42.17		26.91	60.00	50.00	-17.83	-23.09	Р	

LINE CONDUCTED EMISSION TEST-N

M/N:VOLT S

Mode:GSM900

Note:

4

ſ	No.	Freq.	Rea	ding_L (dBuV)		Correct Factor		asuren (dBuV)		· ·	nit uV)	Mai (d	rgin IB)	P/F	Comment
		(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
	1	0.1740	40.21		21.92	10.19	50.40		32.11	64.76	54.76	-14.36	-22.65	Ρ	
	2	0.2180	39.02		22.35	10.23	49.25		32.58	62.89	52.89	-13.64	-20.31	Ρ	
ſ	3	0.4540	36.87		26.75	10.37	47.24		37.12	56.80	46.80	-9.56	-9.68	Р	
ſ	4	1.9940	31.46		22.00	10.22	41.68		32.22	56.00	46.00	-14.32	-13.78	Р	
	5	3.1140	33.46		23.30	10.54	44.00		33.84	56.00	46.00	-12.00	-12.16	Р	
	6	17.2299	31.67		22.71	10.13	41.80		32.84	60.00	50.00	-18.20	-17.16	Р	

6.2. RADIATED DISTURBANCE MEASUREMENT

6.2.1. LIMITS OF RADIATED DISTURBANCES

Limits for radiated disturbance 30M to1 GHz at a measurement distance of 3 m

Frequency range (MHz)	Quasi peak limits(dBuV/m), for Class B ITE, at 3m measurement distance
30 - 230	40
230 - 1000	47

Limits for radiated disturbance above 1 GHz at a measurement distance of 3 m

	Limits (dBu	Limits (dBuV/m), Class B ITE					
Frequency range (MHz)	Peak	Average					
1000-3000MHz	70	50					
3000-6000MHz	74	54					

6.2.2. TEST CONDITION:

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

Notes:

1. The lower limit shall apply at the transition frequency.

2. Additional provisions may be required for cases where interference occurs.

6.2.3. TEST PROCEDURE

(1). The EUT was placed on the top of an insulating table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

(2). The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

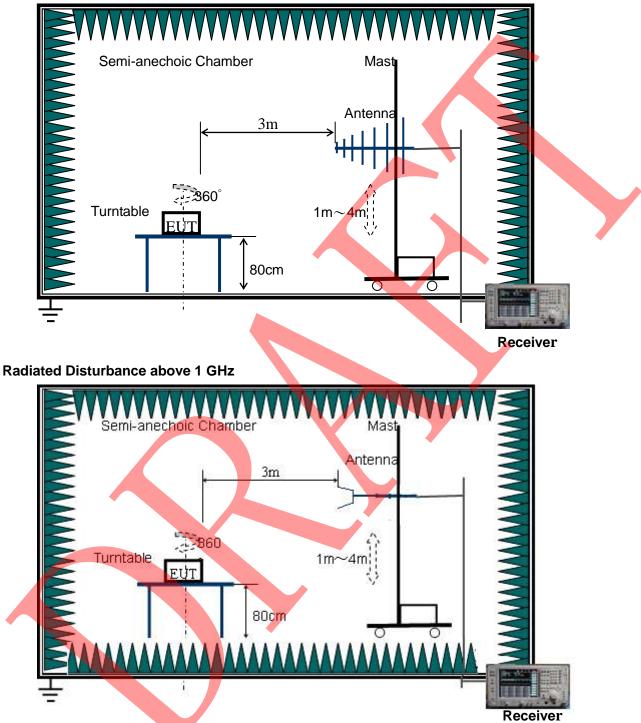
(3). The antenna is a broadband antenna, and its height is varied from 1 to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

(4). For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to the heights from 1 to 4 meters and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading.


(5). The test-receiver system was set to Peak Detector Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 3dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emission that did not have 3dB margin would be retested one by one using the quasi-peak method.

(6). For emissions above 1G, the Horn Antenna is used. and its height is varied from 1 to 4 meter above the ground and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

(7). The EUT was arranged according to Clause 8 of CISPR 16-1-4. Use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.


(8). For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: Refer to the clause 8.2 in EN 301 489-1, enclosure of ancillary equipment measured on a stand-alone basis. Ancillary equipment can also be measured in combination with the radio equipment under test. When the ancillary equipment is measured in combination with the radio equipment, radiated emissions from the transmitter/transceiver shall be ignored, but recorded in the test report.

6.2.4. BLOCK DIAGRAM OF TEST SETUP

Radiated Disturbance 30M to1 GHz

For the actual test configuration, please refer to the related item-Photographs of the Test Configuration.

6.2.5 TEST RESULT

3 *

4 5 6

896.5333

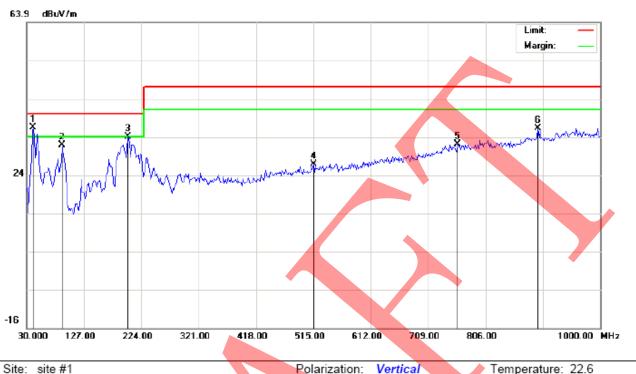
11.88

28.52

All test modes were carried out for all operation modes

The worst test data (Specification A GSM 900 of mode 1) was showed as the follow: Note: The filter has been used in this test.

	49.4000	21.08	11.28	32.36	40.00	-7.64	peak		
	97.9000	21.93	8. <mark>38</mark>	30.31	40.00	-9.69	peak		
k	201.3667	25.25	11 <mark>.8</mark> 6	37.11	40.00	-2.89	peak		
	217.5333	23.59	10.21	33.80	40.00	-6.20	peak		
	558.6500	6.10	22.70	28.80	47.00	-18.20	peak		


47.00

-6.60

peak

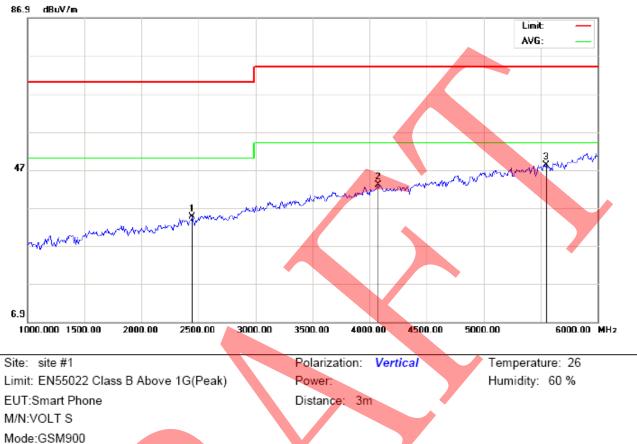
40.40

Humidity: 54.9 %

RADIATED EMISSION BELOW 1GHZ- VERTICAL

Site: site #1 Limit: EN55022 ClassB 3M Radiation EUT:Smart Phone M/N: VOLT S Mode: GSM900 Note:

Antenna Table Reading Freq. Factor Measurement Limit Over Mk Height Degree No. Detector Comment dB MHz dBu∀ dBuV/m dBu∀/m dB/m cm degree * 41.3167 27.60 8.81 36.41 40.00 1 -3.59 peak 2 26.48 5.31 31.79 40.00 89.8167 -8.21 peak 3 201.3667 24.87 9.13 34.00 40.00 -6.00 peak 515.0000 5.33 21.53 26.86 47.00 4 -20.14 peak 5 759.1167 5.30 26.76 32.06 47.00 -14.94 peak 6 7.72 28.48 36.20 894.9167 47.00 -10.80 peak


Power:

Distance:

RADIATED EMISSION ABOVE 1GHZ - HORIZONTAL

No.	Mk	Freq,	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2416.667	42.22	-9.66	32.56	70.00	-37.44	peak			
2		3041.667	44.98	-8.32	36.66	74.00	-37.34	peak			
3	*	5100.000	48.09	-1.80	46.29	74.00	-27.71	peak			

RADIATED EMISSION ABOVE 1GHZ - VERTICAL

Note:

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2441.667	44.23	-9.63	34.60	70.00	-35.40	peak			
2		4075.000	47.48	-4.55	42.93	74.00	-31.07	peak			
3	*	5550.000	50.08	-1.79	48.29	74.00	-25.71	peak			

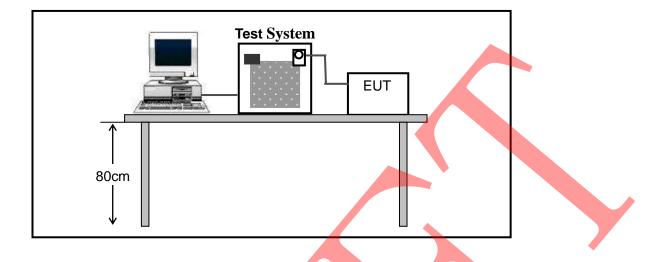
6.3. HARMONIC CURRENT MEASUREMENT

6.3.1 LIMITS OF HARMONIC CURRENT

Harmonic current emissions evaluate the potential for the EUT to cause distortion on the AC power lines. It is applicable to electrical and electronic equipment having an input current \leq 16 A per phase, and intended to be connected to public low-voltage distribution systems.

Limits for	Class A Equipment
Harmonics Order n	Max. permissible harmonic current (A)
Od	d harmonics
3	2.30
5	1.14
7	0.77
9	0.40
11	0.33
13	0.21
15≤n≤39	0.15×15/n
Eve	n harmonics
2	1.08
4	0.43
6	0.30
8≤n≤40	0.23×8/n
Note:	

Note:


- 1. According to section 5 of EN61000-3-2, the EUT is Class A equipment.
- 2. The above limits are for all applications having an active input power>75W. No limits apply for equipment with an active input power up to and including 75W.

6.3.2 TEST PROCEDURE

1. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.

2. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.

6.3.3 TEST SETUP

For the actual test configuration, please refer to Appendix II : Photographs of the Test Configuration.

6.3.4 TEST RESULT

Note:

- 1. The active input power of the EUT is less than 75W.
- 2. No limits apply for equipment with an active input power up to and including 75W.

6.4. VOLTAGE FLUCTUATIONS AND FLICK MEASUREMENT 6.4.1. LIMITS OF VOLTAGE FLUCTUATIONS AND FLICK

The objective of voltage changes, voltage fluctuations and flicker in public low voltage supply systems during equipment with rated current \leq 16 A per phase, ensures that home appliances and certain other electrical equipment do not adversely affect lighting equipment when connected to the same power system.

Test Item	Limit	Note
P _{st}	1.0	P _{st} means Short-term flicker indicator
P _{lt}	0.65	P _{lt} means long-term flicker indicator
T _{dt}	0.2	T _{dt} means maximum time that d _t exceeds 3%
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
d _c (%)	3%	d _c means relative steady-state voltage change.

6.4.2. TEST PROCEDURE

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions
- b. During the flick measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

6.4.3. TEST SETUP

Same as 3.4.3

6.4.4. TEST RESULT

Test Specification

Test Frequency	50Hz	Test Vol <mark>ta</mark> ge	AC 230V
Waveform	Sine	Test Time	10 minutes(P _{st}); 2 hours (P _{lt})

All test modes were carried out for all operation modes Only the test result of the worst case GSM 900 as follow:

Test Parameter	Measurement Value	Limit	Remarks	
Pst	0.015	1.0	Pass	
P _{lt}	0.011	0.65	Pass	
T _{dt(s)}	0.06	0.2	Pass	
d _{max} (%)	0.04%	4%	Pass	
d _c (%)	0.09%	3%	Pass	

7. IMMUNITY TEST

7.1. EUT SETUP AND OPERATING CONDITIONS

The battery was in full voltage and the charger was connected to the EUT to keep the voltage constant during the tests. During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

7.2. GENERAL PERFORMANCE CRITERIA 7.2.1. GENERAL PERFORMANCE CRITERIA

The EUT tested system was configured as the statements of **2.2** Unless otherwise a special operating

condition is specified in the follows during the testing.

Criteria	During the test	After the test
A	Shall operate as intended May show degradation of performance (see note 1) Shall be no loss of function Shall be no unintentional transmissions	Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions
С	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: no degradation of performance after the test is understood as any degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

7.2.2. PERFORMANCE CRITERIA FOR TT, TR, CT AND CR PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE CRITERIA (GPS)

According to EN 301 489-3 standard, the general performance criteria as following:

Criteria	During the test	After the test
A	Operate as intended No loss of function For equipment type II the minimum performance shall be 12 dB SINAD No unintentional responses	Operate as intended For equipment type II the communication link shall be maintained No loss of function No degradation of performance No loss of stored data or user programmable functions
В	May be loss of function (one or more) No unintentional responses	Operate as intended Lost function(s) shall be self-recoverable No degradation of performance No loss of stored data or user programmable functions
Note: please ref	er to EN301 489-3 clause 6.3.	

7.2.3. PERFORMANCE CRITERIA FOR (GSM/ WCDMA)

CLAUSE 6 of EN301 489 –1				
Criteria	Performance criteria			
CT/CR	During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. At the conclusion of the test, the EUT shall operate as intended with no loss of user control functions or stored data, and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmitter shall not unintentionally operate. I The EUT shall operate as its intended operating condition during and after the test. I The EUT (transmitter) uplink speech output level shall be at least 35dB less than the previously recorded reference. I The EUT (receiver) shall show the RXQUAL of the GSM downlink does not exceed the value of three, and the BER of the WCDMA shall no greater than 0.1%, and measure during each individual exposure in the test sequence. I The EUT (receiver) downlink speech output level shall be at least 35dB less than the previously recorded reference. I The EUT (receiver) downlink speech output level shall be at least 35dB less than the previously recorded reference. I The EUT (receiver) downlink speech output level shall be at least 35dB less than the previously recorded reference. I The EUT (receiver) downlink speech output level shall be at least 35dB less than the previously recorded reference. I The EUT shall show no loss of user control functions or stored data and the communication link shall be maintained during and after the test. I The EUT shall show no loss of user control functions or stored data and the communication link shall be maintained during and after the test. I The EUT shall show no loss of user control functions or stored data and the communication link shall be maintained during and after the test.			
TT/TR	The EUT shall show no unintentional responses when it is in idle condition. After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. At the conclusion of each exposure the EUT shall operate with no user noticeable loss of the communication link. At the conclusion of the total test comprising the series of individual exposures, the EUT shall operate as intended with no loss of user control functions or stored data, as declared by the manufacturer and the communication link shall have been maintained. In addition to confirming the above performance during a call, the test shall also be performed in idle mode, and the transmittee.			

Note:

For data transmission, the EUT was assessed in the following methods:

For WCDMA testing, the BER (as referred in TS 134 109 [9]) is used, it shall not exceed 0.1% during

the test sequence.

Note: All test modes have been tested during the test.

Criteria	During the test	After the test
A	Shall operate as intended May show degradation of performance (see note 1) Shall be no loss of function Shall be no unintentional transmissions	Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions
С	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)

7.2.4 GENERAL PERFORMANCE CRITERIA TO BT/ WIFI

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: no degradation of performance after the test is understood as any degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

7.2.5 PERFORMANCE CRITERIA FOR TT AND TR TO BT/ WIFI

PERFORMANCE FOR TT TO BT/ WIFI

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR TO BT/ WIFI

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

7.2.6 PERFORMANCE CRITERIA FOR CT AND CR TO BT/ WIFI

PERFORMANCE FOR CT TO BT/ WIFI

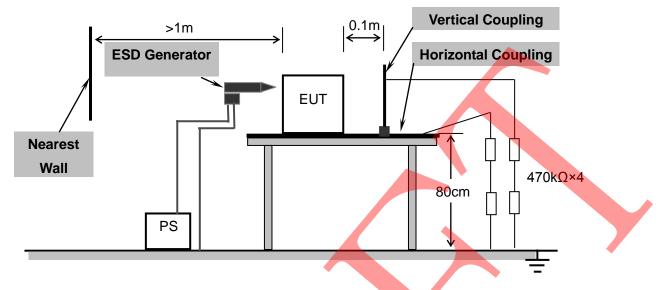
The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR TO BT/ WIFI

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

7.3. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.3.1. TEST SPECIFICATION


Basic Standard	EN 61000-4-2
Discharge Impedance	330Ω / 150 pF
Discharge Voltage	Air Discharge –8 kV , Contact Discharge – 4 kV
Polarity	Positive / Negative
Number of Discharge	Minimum 20 times at each test point
Discharge Mode	Single discharge
Discharge Period	1-second minimum
Test Conditions	Temperature/ Humidity:20.8°C/50.5%

7.3.2. TEST PROCEDURE

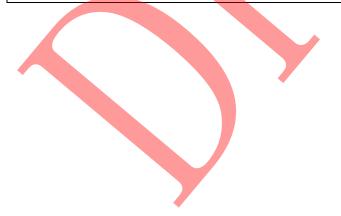
The test procedure was in accordance with EN 61000-4-2:

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were completed.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m×0.5m) was placed vertically to and 0.1 meters from the EUT.

7.3.3. TEST SETUP

For the actual test configuration, please refer to Appendix II > Photographs of the Test Configuration.

7.3.4. TEST RESULT


EN 301 489-3 V1.6.1 GPS (MODE 5) TEST RESULTS

Test Points	Discharge Level (kV)	Discharge Mode	Observation	Conclusion
НСР	±2,±4	Indirect	TT, TR	Pass
VCP	±2,±4	Indirect	TT, TR	Pass
Interface of USB to Adapter	±2,±4	Contact	TT, TR	Pass
Interface of Earphone to MS	±2,±4	Contact	TT, TR	Pass
Interface of Adapter/ USB to MS	±2, ±4 , ±8	Air	TT, TR	Pass
Telephone Receiver	±2, ±4,±8	Air	TT, TR	Pass
Speaker	±2, ±4,±8	Air	TT, TR	Pass
Note: There was not any unintentional transmission discovered in standby mode				

EN 301 489-7 V1.3.1 MS (MODE 1_GSM/GPRS 900&DCS/GPRS 1800) TEST RESULT

Test Points	Discharge Level (kV)	Discharge Mode	Observation	Conclusion
HCP	±2,±4	Indirect	TT, TR	Pass
VCP	±2,±4	Indirect	TT, TR	Pass
Interface of USB to Adapter	±2,±4	Contact	TT, TR	Pass
Interface of Earphone to MS	±2,±4	Contact	TT, TR	Pass
Interface of Adapter/ USB to MS	±2, ±4 , ±8	Air	TT, TR	Pass
Telephone Receiver	±2, ±4 [,] ±8	Air	TT, TR	Pass
Speaker	±2, ±4 , ±8	Air	TT, TR	Pass

Note: There was not any unintentional transmission discovered in standby mode

EN 301 489-17 V2.2.1 BT (MODE 3) TEST RESULT

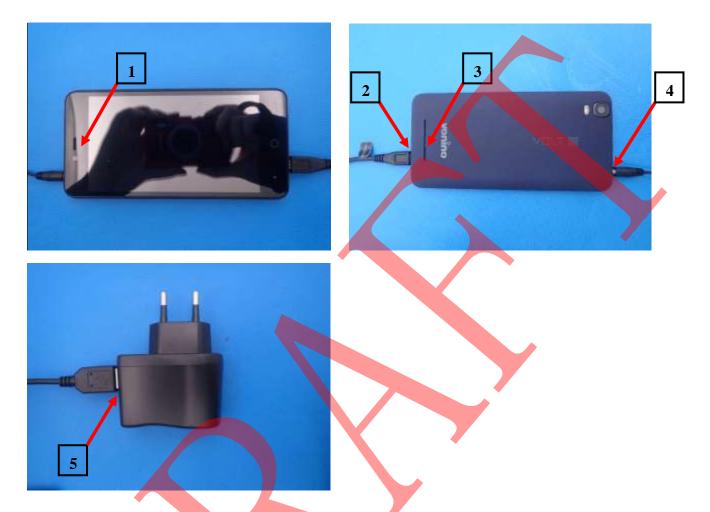
Test Points	Discharge Level (kV)	Discharge Mode	Observation	Conclusion
HCP	±2,±4	Indirect	TT, TR	Pass
VCP	±2,±4	Indirect	TT, TR	Pass
Interface of USB to Adapter	±2,±4	Contact	TT, TR	Pass
Interface of Earphone to MS	±2,±4	Contact	TT, TR	Pass
Interface of Adapter/ USB to MS	±2, ±4 , ±8	Air	TT, TR	Pass
Telephone Receiver	±2, ±4 , ±8	Air	TT, TR	Pass
Speaker	±2, ±4 , ±8	Air	TT, TR	Pass
Note: There was not any unintentional transmission discovered in standby mode				

EN 301 489-17 V2.2.1 WIFI (MODE 4) TEST RESULT

Test Points	Discharge Level (kV)	Discharge Mode	Observation	Conclusion
НСР	±2,±4	Indirect	TT, TR	Pass
VCP	±2,±4	Indirect	TT, TR	Pass
Interface of USB to Adapter	±2,±4	Contact	TT, TR	Pass
Interface of Earphone to MS	±2,±4	Contact	TT, TR	Pass
Interface of Adapter/ USB to MS	±2, ±4 • ±8	Air	TT, TR	Pass
Telephone Receiver	±2, ±4 , ±8	Air	TT, TR	Pass
Speaker	±2, ±4 , ±8	Air	TT, TR	Pass
Note: There was not any unintentional transmission discovered in standby mode				

Test Points	Discharge Level (kV)	Discharge Mode	Observation	Conclusion
HCP	±2,±4	Indirect	TT, TR	Pass
VCP	±2,±4	Indirect	TT, TR	Pass
Interface of USB to Adapter	±2,±4	Contact	TT, TR	Pass
Interface of Earphone to MS	±2,±4	Contact	TT, TR	Pass
Interface of Adapter/ USB to MS	±2, ±4 , ±8	Air	TT, TR	Pass
Telephone Receiver	±2, ±4 , ±8	Air	TT, TR	Pass
Speaker	±2, ±4 [,] ±8	Air	TT, TR	Pass

EN 301 489-24 V1.5.1 UMTS (MODE 1_WCDMA/HSPA2100& WCDMA/HSPA900) TEST RESULT


Note: There was not any unintentional transmission discovered in standby mode

Phenomenon: no function loss during the test.

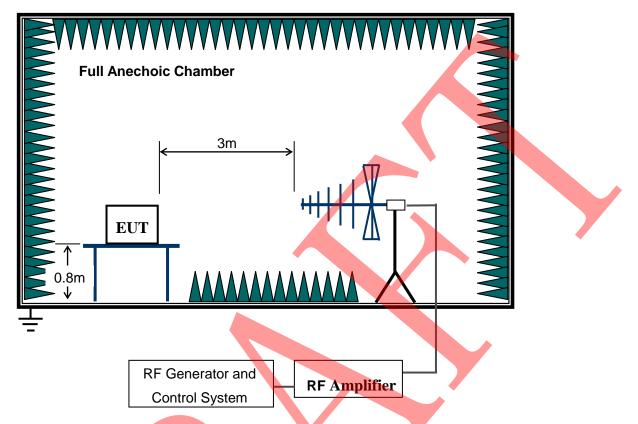
PERFORMANCE	CRITERIA
Criteria requested	□ A/ ⊠ B/ □ C
Criteria meet	🖂 A/ 🗌 B/ 🗌 C

Report No.: AGC01813161203EE01 Page 37 of 68

Discharge points:

Note: The air discharge points are 1~3. The contact discharge points are 4 and 5.

7.4. RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TEST 7.4.1 TEST SPECIFICATION


Basic Standard	EN 61000-4-3
Frequency Range	80 MHz – 1000MHz, 1400MHz-2700MHz
Field Strength	3V/m
Modulation	1 kHz sine wave, 80%, AM modulation
Frequency Step	1% of fundamental
Polarity of Antenna	Horizontal and Vertical
Test Distance	3m
Antenna Height	1.5m
Dwell Time	3 seconds
Test Conditions	Temperature/ Humidity:21.3°C/51.6%

7.4.2 TEST PROCEDURE

The test procedure was in accordance with EN 61000-4-3.

- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The test signal was 80% amplitude modulated with a 1 kHz sine wave.
- c. The frequency range was swept from 80 MHz to 1000MHz and 1400MHz to 2700MHz with the exception of the exclusion band for transmitters, receivers and duplex transceivers. The rate of sweep did not exceed 1.5×10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The field strength level was 3V/m.
- f. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.
- g. Downlink Mode: the audio source was adjusted to achieve a reference level equivalent to a SPL of 0 dBPa at 1 kHz at the input of the acoustic coupler for the downlink, the reading of the audio level meter was recorded as a reference level. During the test, the downlink speech output level was monitored, it was confirmed to be at least 35 dB less than the previously- recorded reference level.
- h. Uplink Mode: EUT is used for this calibration, the output of the audio source was adjusted to achieve a reference level equivalent to a SPL of –5 dBPa at 1kHz at the Mouth Reference Point (MRP), the reading of the audio level meter, which was connected to the output of the communication tester, was recorded as a reference level. During the test, the uplink speech output level was monitored, it was confirmed to be at least 35 dB less than the previously- recorded reference level.

7.4.3 TEST SETUP

For the actual test configuration, please refer to Appendix II : Photographs of the Test Configuration.

i oi ine actua	i test coningulation, pied	ase reler to Ap	apris of the resi

7.4.4 TEST RESULT EN 301 489-3 V1.6.1 GPS (MODE 5) TEST RESULT

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Conclusion	Side
Operating Made	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Operating Mode	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Ctondby Mode	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Standby Mode	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear

EN 301 489-7 V1.3.1 MS (MODE 1) TEST RESULT

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Conclusion
GSM/GPRS	Vertical	80-1000, 1400-2700	3	CT,CR	Pass
900 MHz, Traffic	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass
GSM/GPRS	Vertical	80-1000, 1400-2700	3	CT,CR	Pass
900 MHz, Idle	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass
DCS/GPRS	Vertical	80-1000, 1400-2700	3	CT,CR	Pass
1800 MHz, Traffic	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass
DCS/GPRS	Vertical	80-1000, 1400-2700	3	CT,CR	Pass
1800 MHz, Idle	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass
Note: There was not a	any unintentional tr	ansmission discovered in	idle mode		

Note: There was not any unintentional transmission discovered in idle mode

EN 301 489-17 V2.2.1 BT (MODE 3) TEST RESULT

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Conclusion	Side
	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Operating Mode	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Standby Mode	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear

EN 301 489-17 V2.2.1 WIFI (MODE 4) TEST RESULT

Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Conclusion	Side
Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
	Polarity Vertical Horizontal Vertical	Polarity(MHz)Vertical80-1000, 1400-2700Horizontal80-1000, 1400-2700Vertical80-1000, 1400-2700	Antenna PolarityFrequency (MHz)Strength (V/m)Vertical80-1000, 1400-27003Horizontal80-1000, 1400-27003Vertical80-1000, 1400-27003Horizontal80-1000, 1400-27003	Antenna PolarityFrequency (MHz)Strength (V/m)ObservationVertical80-1000, 1400-27003CT,CRHorizontal80-1000, 1400-27003CT,CRVertical80-1000, 1400-27003CT,CR	Antenna PolarityFrequency (MHz)Strength (V/m)ObservationConclusionVertical80-1000, 1400-27003CT,CRPassHorizontal80-1000, 1400-27003CT,CRPassVertical80-1000, 1400-27003CT,CRPass

Note: There was not any unintentional transmission discovered in standby mode

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Conclusion	Side
UMTS/HSPA	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
2100 MHz, Traffic	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
UMTS/HSPA	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
2100 MHz, Idle	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
UMTS/HSPA	Vertical	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
900 MHz, Traffic	Horizontal	80-1000, 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear
UMTS/HSPA	Vertical	80-1000, 1400 <mark>-2</mark> 700	3	CT,CR	Pass	Right, Left, Front, Rear
900 MHz, Idle	Horizontal	80 <mark>-1000</mark> , 1400-2700	3	CT,CR	Pass	Right, Left, Front, Rear

EN 301 489-24 V1.5.1 UMTS (MODE 1) TEST RESULT

Note: In the data transfer mode, the BER (as referred in TS 134 109 [8]) is used, it shall not exceed 0,001 during the test sequence, in the speech mode, the performance criteria shall be that the uplink and downlink speech output levels shall be at least 35 dB less than the recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz. in idle mode, the transmitter is not unintentionally operate.

Special condition	_special conditions for EMC minimumity tests (Worst Test Report)					
EUT operating Mode		Polarity	Position (°)	Max. value(dB)	Frequency (MHz)	
	Linlink	Н	Front	-50.34	373.54	
	Uplink	V	Front	-58.47	675.31	
Call Mode	Downlink	Н	Front	-48.46	320.92	
GSM 900	Downlink	V	Front	-57.33	611.45	
		Н	Front	0	80.00	
	RX Quality	V	Front	0	80.00	

Special conditions for EMC immunity tests (Worst Test Report)

EUT opera	ating Mode	Polarity	Position (°)	Max. value(dB)	Frequency (MHz)
	Linkalı	Н	Front	-52.28	355.51
	Uplink	V	Front	-54,50	365.22
UMTS	Downlink	Н	Front	-59.77	277.79
2100 MHz Downlink BER	Downlink	V	Front	-56.90	602.59
	DED	Н	Front	0.0005	80.00
	BER	V	Front	0.0004	80.00
Note:					

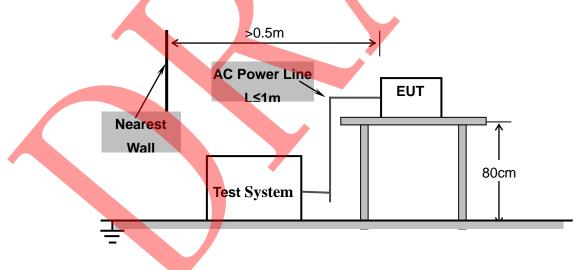
Note:

Downlink SPL = 0 dBPa at 1KHz at the input of acoustic coupler Uplink SPL = -5 dBPa at 1KHz at the Mouth Reference Point

Phenomenon: no function loss during the test.

PERFORMANCE CRITERIA						
Criteria requested	🖂 A/ 🗌 B/ 🗌 C					
Criteria meet	🖂 A/ 🗌 B/ 🗌 C					

7.5. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST


7.5.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-4
Test Voltage	a.c. power port – 1 kV; communication port 0.5kV
Polarity	Positive/Negative
Impulse Frequency	5kHz
Impulse wave shape	5/50ns
Burst Duration	15ms
Burst Period	300ms
Test Duration	Not less than 1 min.
Test Conditions	Temperature/ Humidity:22.1°C/52.3%

7.5.2 TEST PROCEDURE

- a. The EUT was tested with 1000 volt discharges to the AC power input leads.
- b. Both positive and negative polarity discharges were applied.
- c. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- d. The duration time of each test sequential was 1 minute.
- e. The transient/burst waveform was in accordance with EN 61000-4-4, 5/50ns.
- f. Test communication port according EN 61000-4-4 with clamp

7.5.3 TEST SETUP

For the actual test configuration, please refer to Appendix II : Photographs of the Test Configuration.

7.5.4 TEST RESULT

EN 301 489-3 V1.6.1 GPS (MODE 5) TEST RESULT

Test Point	Polarity	Test Level (kV)	Observation	Conclusion		
a.c. port, L	+/-	1	TT,TR	Pass		
a.c. port, N	+/-	1	TT,TR	Pass		
a.c. port, L-N	+/-	1	TT,TR	Pass		
Note: There was not any unintentional transmission discovered in standby mode						

Note: There was not any unintentional transmission discovered in standby mode

EN 301 489-7 V1.3.1 MS (MODE 1_GSM/GPRS 900&DCS/GPRS 1800) TEST RESULT

Test Point	Polarity	Test Level (kV)	Observation	Conclusion	
a.c. port, L	+/-	1	TT,TR	Pass	
a.c. port, N	+/-	1	TT,TR	Pass	
a.c. port, L-N	+/-	1	TT,TR	Pass	
Nata. There uses not environmentantional transmission discovered in idle mode					

Note: There was not any unintentional transmission discovered in idle mode

EN 301 489-17 V2.2.1 BT (MODE 3) TEST RESULT

Test Point	Polarity	Test Level (kV)	Observation	Conclusion	
a.c. port, L	+/-	1	TT,TR	Pass	
a.c. port, N	+/-	1	TT,TR	Pass	
a.c. port, L-N	+/-	1	TT,TR	Pass	

Note: There was not any unintentional transmission discovered in standby mode

EN 301 489-17 V2.2.1 WIFI (MODE 4) TEST RESULT

Test Point	Polarity	Test Level (kV)	Observation	Conclusion	
a.c. port, L	+/-	1	TT,TR	Pass	
a.c. port, N	+/-	1	TT,TR	Pass	
a.c. port, L-N	+/-	1	TT,TR	Pass	
Note: There was not any unintentional transmission discovered in standby made					

Note: There was not any unintentional transmission discovered in standby mode

EN 301 489-24 V1.5.1 UMTS (MODE 1_WCDMA/HSPA2100& WCDMA/HSPA900) TEST RESULT

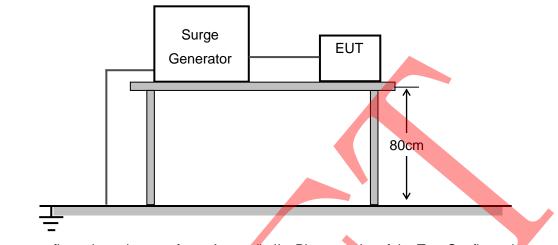
Test Point	Polarity	Test Level (kV)	Observation	Conclusion	
a.c. port, L	+/-	1	TT,TR	Pass	
a.c. port, N	+/-	1	TT,TR	Pass	
a.c. port, L-N	+/-	1	TT,TR	Pass	

Note: There was not any unintentional transmission discovered in idle mode

Phenomenon: no function loss during the test.

PERFORMA	ANCE CRITERIA
Criteria requested	□ A/ ⊠ B/ □ C
Criteria meet	⊠ A/ □ B/ □ C
•	

7.6. SURGE IMMUNITY TEST


7.6.1 TEST SPECIFICATIO						
Basic Standard	EN 61000-4-5					
Waveform	Voltage 1.2/50 μs; Current 8/20 μs					
Test Voltage	a.c. power port, line to ground 2 kV, line to line 1.0 Kv communication port 1kV					
Polarity	Positive/Negative					
Phase Angle	0°, 90°, 180°, 270°					
Repetition Rate	60sec					
Times	5 time/each condition.					
Test Conditions	Temperature/ Humidity:21.8°C/52.4%					

7.6.2 TEST PROCEDURE

- a. The EUT and the auxiliary equipment were placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m×1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT was less than 2 meters (provided by the manufacturer).
- b. The EUT was connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise was applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- c. The surges were applied line to line and line(s) to earth. When testing line to earth the test voltage was applied successively between each of the lines and earth. Steps up to the test level specified increased the test voltage. All lower levels including the selected test level were tested. The polarity of each surge level included positive and negative test pulses.
- d. Test communication Port according EN55024.

7.6.3 TEST SETUP

For the actual test configuration, please refer to Appendix II : Photographs of the Test Configuration.

7.6.4 TEST RESULT

EN 301 489-3 V1.6.1 GPS (MODE 5) TEST RESULT

Coupling Line	Polarity	Voltage (kV)	Observation	Conclusion	
a.c. power, L-N	+/-	1.0	TT,TR	Pass	
Note: These was not any unintentional tennomianian discovered in standby made					

Note: There was not any unintentional transmission discovered in standby mode

EN 301 489-7 V1.3.1 MS (MODE 1_GSM/GPRS 900&DCS/GPRS 1800) TEST RESULT

Coupling Line	Polarity	Voltage (kV)		Observation		Conclusion
a.c. power, L-N	+/-	1.0		TT,TR		Pass
Note: There was not any unintentional transmission discovered in idle mode						

EN 301 489-17 V2.2.1 BT (MODE 3) TEST RESULT

Coupling Line	Polarity	Voltage (kV)	Observation	Conclusion	
a.c. power, L-N	+/-	1.0	TT,TR	Pass	
Note: There was not any unintentional transmission discovered in standby mode					

EN 301 489-17 V2.2.1 WIFI (MODE 4) TEST RESULT

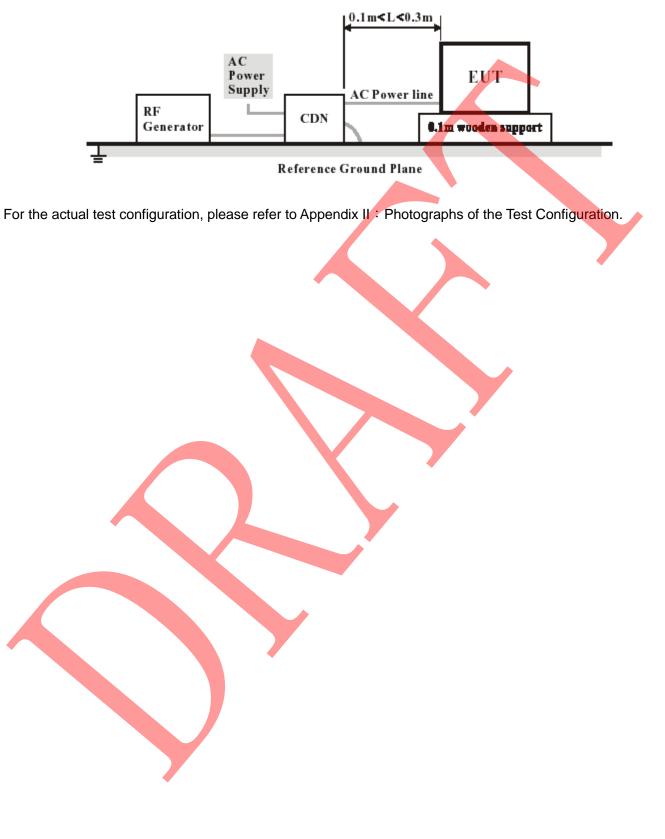
Coupling Line	Polarity		Voltage (kV)	Observation	Conclusion
a.c. power, L-N	+/-		1.0	TT,TR	Pass
Note: There was not any unintentional transmission discovered in standby mode					

EN 301 489-24 V1.5.1 UMTS (MODE 1_WCDMA/HSPA2100& WCDMA/HSPA900) TEST RESULT					
Coupling Line	Polarity	Voltage (kV)	Observation	Conclusion	
a.c. power, L-N	+/-	1.0	TT,TR	Pass	

Note: There was not any unintentional transmission discovered in idle mode

Phenomenon: no function loss during the test.

PERFORMANC	E CRITERIA
Criteria reque <mark>ste</mark> d	□ A/ ⊠ B/ □ C
Criteria meet	⊠ A/ □ B/ □ C


7.7. IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS 7.7.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-6
Frequency Range	0.15 MHz – 80 MHz
Field Strength	3Vrms
Modulation	1 kHz Sine Wave, 80% AM
Frequency Step	1% of fundamental
Coupled Cable	a.c. power line, Communication Line
Coupling Device	CDN-M2 ,Clamp
Test Conditions	Temperature/ Humidity:22.5°C/53.2%

7.7.2 TEST PROCEDURE

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.
- c. The test signal was 80% amplitude modulated with a 1 kHz sine wave
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80% amplitude. The sweep rate shall not exceed 1.5×10⁻³ decades/s. The step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally.
- e. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- f. Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.
- g. Downlink Mode: the audio source was adjusted to achieve a reference level equivalent to a SPL of 0 dBPa at 1 kHz at the input of the acoustic coupler for the downlink, the reading of the audio level meter was recorded as a reference level. During the test, the downlink speech output level was monitored, it was confirmed to be at least 35 dB less than the previously- recorded reference level.
- h. Uplink Mode: EUT is used for this calibration, the output of the audio source was adjusted to achieve a reference level equivalent to a SPL of –5 dBPa at 1kHz at the Mouth Reference Point (MRP), the reading of the audio level meter, which was connected to the output of the communication tester, was recorded as a reference level. During the test, the uplink speech output level was monitored, it was confirmed to be at least 35 dB less than the previously- recorded reference level.

7.7.3 TEST SETUP

7.7.4 TEST RESULT

EN 301 489-3 V1.6.1 GPS (MODE 5) TEST RESULT

EUT Working Mode	Test Port	Frequency (MHz)	Field Strength (Vrms)	Observation	Conclusion
Operating Mode	a.c. port	0.15 – 80	3	CT,CR	Pass
Standby Mode	a.c. port	0.15 – 80	3	CT,CR	Pass
Note: There was not	any unintention	nal transmission in	Standby mode		

EN 301 489-7 V1.3.1 MS (MODE 1) TEST RESULT

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (Vrms)	Observation	Conclusion
GSM/GPRS 900 MHz, Traffic	a.c. port	0.15-80	3	CT,CR	Pass
GSM/GPRS 900 MHz, Idle	a.c. port l	0.15-80	3	CT,CR	Pass
DCS/GPRS 1800 MHz, Traffic	a.c. port	0.15-80	3	CT,CR	Pass
DCS/GPRS 1800 MHz, Idle	a.c. port	0.15-80	3	CT,CR	Pass
Note: There was not a	ny unintentiona	l transmission discovere	d in idle mode		

EN 301 489-17 V2.2.1 BT (MODE 3) TEST RESULT

EUT Working Mode	Test Port	Frequency (MHz)	Field Strength (Vrms)	Observation	Conclusion
Operating Mode	a.c. port	0.15 – 80	3	CT,CR	Pass
Standby Mode	a.c. port	0.15 – 80	3	CT,CR	Pass

Note: There was not any unintentional transmission in Standby mode

EN 301 489-17 V2.2.1 WIFI (MODE 4) TEST RESULT

EUT Working Mode	Test Port	Fr <mark>e</mark> quency (MHz)	Field Strength (Vrms)	Observation	Conclusion
Operating Mode	a.c. port	0.15 – 80	3	CT,CR	Pass
Standby Mode	a.c. port	0.15 – 80	3	CT,CR	Pass
Note: There was not		nal transmission in	Standby mode	•	•

Note: There was not any unintentional transmission in Standby mode

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (Vrms)	Observation	Conclusion
UMTS/HSPA 2100 MHz, Traffic	a.c. port	0.15-80	3	CT,CR	Pass
UMTS/HSPA 2100 MHz, Idle	a.c. port l	0.15-80	3	CT,CR	Pass
UMTS/HSPA 900 MHz, Traffic	a.c. port	0.15-80	3	CT,CR	Pass
UMTS/HSPA 900 MHz, Idle	a.c. port l	0.15-80	3	CT,CR	Pass
Note: There was not a	iny unintentiona	al transmission disco	overed in idle mode		

EN 301 489-24 V1.5.1 UMTS (MODE 1) TEST RESULT

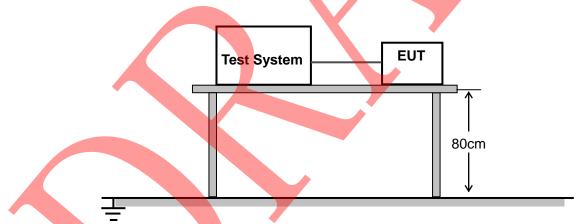
Note: In the data transfer mode, the BER (as referred in TS 134 109 [8]) is used, it shall not exceed 0,001 during the test sequence, in the speech mode, the performance criteria shall be that the uplink and downlink speech output levels shall be at least 35 dB less than the recorded reference levels, when measured through an audio band pass filter of width 200 Hz, centred on 1 kHz. in idle mode, the transmitter is not unintentionally operate.

EUT operating	g Mode	Max. value(dB)	Frequency (MHz)
	11.2.1	-48.04	8.62
	Uplink	-55.45	36.96
Call Mode	Devention	-48.58	9.69
GSM 900	Downlink	-48.53	24.69
		0	80.00
	RX Quality	0	80.00
EUT operating	a Modo	Max. value(dB)	Frequency (MHz)
=••••p•••	y moue		Frequency (MITZ)
		-43.39	7.65
	Uplink		
UMTS	Uplink	-43.39	7.65
		-43.39 -47.14	7.65 44.73
UMTS	Uplink	-43.39 -47.14 -55.31	7.65 44.73 6.22

Special Conditions for EMC Immunity Tests (Worst Test Result)

Note: Downlink SPL = 0 dBPa at 1KHz at the input of acoustic coupler Uplink SPL = -5 dBPa at 1KHz at the Mouth Reference Point

	PERFORMANCE CRITERIA	
Criteria requested		🖂 A/ 🗌 B/ 🗌 C
Criteria meet		🖂 A/ 🗌 B/ 🗌 C


7.8. VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST 7.8.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-11
Voltage Dips	100% reduction, 0.5 Cycle100% reduction, 1.0 Cycle30% reduction, 25 Cycles
Voltage Interruptions	100% reduction, 250 Cycles
Voltage Phase Angle	0°, 45°, 90°, 135°, 180°, 225°, 270°, 31 <mark>5°</mark>
Test Conditions	Temperature/ Humidity:24.1°C/53.8%

7.8.2 TEST PROCEDURE

- a. The power cord was used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.
- b. The EUT was tested for (1) 100% voltage dip of supplied voltage with duration of 0.5 cycles, (2)100% voltage dip of supplied voltage and duration 1.0 cycle. (3) 30% voltage dip of supplied voltage and duration 25 cycles. (4) 100% voltage interruption of supplied voltage with duration of 250 Cycles was followed,
- c. Voltage reductions occur at 0 degree crossover point of the voltage waveform. The performance of the EUT was checked after the voltage dip or interruption.

7.8.3 TEST SETUP

For the actual test configuration, please refer to Appendix II : Photographs of the Test Configuration.

7.8.4 TEST RESULT EN 301 489-3 V1.6.1 GPS (MODE 5) TEST RESULT

Test item	Voltage Reduction	Duration (cycle)	Times	Interval (Sec)	Observation	Conclusion
Voltage dips	100%	0.5	3	10	TT,TR	Pass
	100%	1	3	10	TT,TR	Pass
	30%	25	3	10	TT,TR	Pass
Voltage interruptions	100%	250	3	10	TT,TR	Pass
Noto: Thoro was	not onv unintent	ional transmiss	sion in stor	dhumada		

Note: There was not any unintentional transmission in standby mode

EN 301 489-7 V1.3.1 MS (MODE 1_GSM/GPRS 900&DCS/GPRS 1800) TEST RESULT

Test item	Voltage Reduction	Duration (cycle)	Times	Interval (Sec)	Observation	Conclusion
	100%	0.5	3	10	TT,TR	Pass
Voltage dips	100%	1	3	10	TT,TR	Pass
	30%	25	3	10	TT,TR	Pass
Voltage interruptions	100%	250	3	10	TT,TR	Pass
Note: There was	not any unintent	ional transmiss	sion in star	ndby mode		

EN 301 489-17 V2.2.1 BT (MODE 3) TEST RESULT

Test item	Voltage Reduction	D <mark>ur</mark> ation (cycle)	Times	Interval (Sec)	Observation	Conclusion
	100%	0.5	3	10	TT,TR	Pass
Voltage dips	100%	1	3	10	TT,TR	Pass
	30%	25	3	10	TT,TR	Pass
Voltage interruptions	100%	250	3	10	TT,TR	Pass
Note: There was	not any unintent	ional transmiss	sion in star	ndby mode		

Duration Voltage Interval Observation Conclusion **Test item** Times Reduction (cycle) (Sec) 100% 0.5 3 10 TT,TR Pass Voltage dips 100% 1 3 10 TT, TR Pass 30% 25 3 10 Pass TT,TR Voltage 100% 250 3 Pass 10 TT,TR interruptions Note: There was not any unintentional transmission in standby mode

EN 301 489-17 V2.2.1 WIFI (MODE 4) TEST RESULT

EN 301 489-24 V1.5.1 UMTS (MODE 1_WCDMA/HSPA2100& WCDMA/HSPA900) TEST RESULT

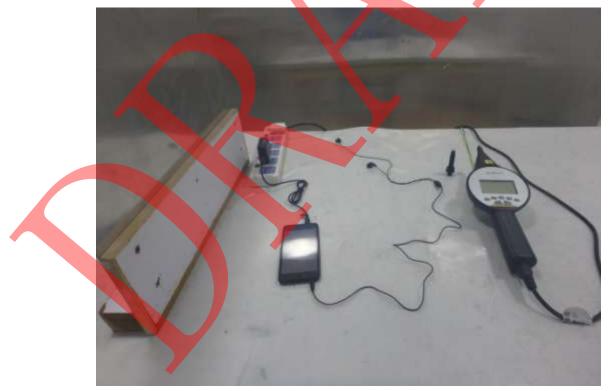
Test item	Voltage Reduction	Duration (cycle)	Times	Interval (Sec)	Observation	Conclusion	
Voltage dips	100%	0.5	3	10	TT,TR	Pass	
	100%	1	3	10	TT,TR	Pass	
	30%	25	3	10	TT,TR	Pass	
Voltage interruptions	100%	250	3	10	TT,TR	Pass	
Note: There was not any unintentional transmission in standby mode							

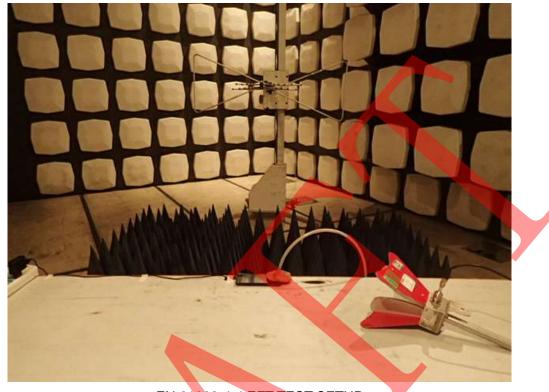
Phenomenon: no function loss during the test.

PERFORMANCE CRITERIA							
Criteria requested	□ A/ ⊠ B/ □ C						
Criteria meet	⊠ A/ □ B/ □ C						

APPENDIX A: PHOTOGRAPHS OF TEST SETUP LINE CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP





EN 61000- 3-3 FLICKER TEST SETUP

EN 61000-4-2 ESD TEST SETUP

Report No.: AGC01813161203EE01 Page 60 of 68

EN 61000-4-3 RS TEST SETUP

EN 61000-4-4 EFT TEST SETUP

Report No.: AGC01813161203EE01 Page 61 of 68

EN 61000-4-5 SURGE TEST SETUP

EN 61000-4-6 CS TEST SETUP

Report No.: AGC01813161203EE01 Page 62 of 68

EN 61000-4-11 DIPS TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

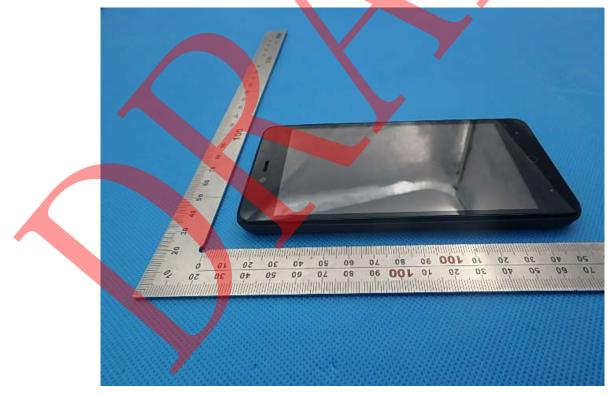
All VIEW OF EUT

TOP VIEW OF EUT



Report No.: AGC01813161203EE01 Page 64 of 68

BOTTOM VIEW OF EUT

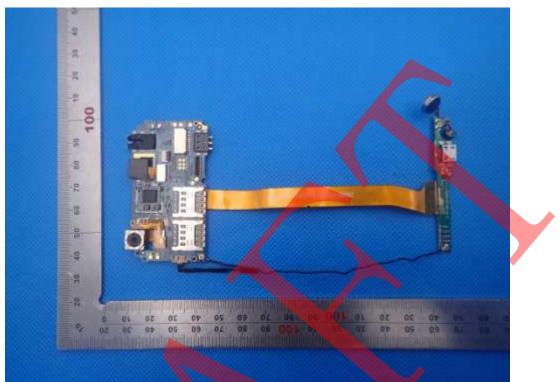

FRONT VIEW OF EUT

BACK VIEW OF EUT

LEFT VIEW OF EUT

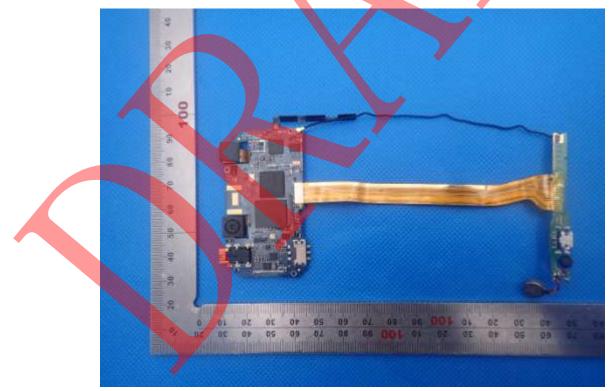
Report No.: AGC01813161203EE01 Page 66 of 68

RIGHT VIEW OF EUT



OPEN VIEW OF EUT-2

OPEN VIEW OF EUT-3



Report No.: AGC01813161203EE01 Page 68 of 68

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

----END OF REPORT----