

Page 1 of 61

RF Test Report

Report No.: AGC09377170502EE05

PRODUCT DESIGNATION	4 ×	Tablet PC
BRAND NAME	:	Vonino
MODEL NAME	:	Navo S
CLIENT	e	Vonino Electronics (HK) Limited
DATE OF ISSUE	:	May. 10, 2017
STANDARD(S)	The	EN 300 328 V1.9.1 (2015-02)
REPORT VERSION		V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

No.16 E

Attestation of Global Compliance

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		May. 10, 2017	Valid	Re-certification Report

Note: The report of the model (Navo S) is based on the original report- No. AGC06327160802EE05, which

was named after (K701X), with some changed basic information. The Tablet PC shut down the function of

Bluetooth by software. All the test data is refer to the original report.

The results showed fins, jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. GENERAL INFORMATION	5
2.1. DESCRIPTION OF EUT	5
2.2. OBJECTIVE	5
2.3. TEST STANDARDS AND RESULTS	5
2.4. TEST ITEMS AND THE RESULTS	6
2.5. ENVIRONMENTAL CONDITIONS	6
3. MEASUREMENT UNCERTAINTY	7
4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	8
5. ETSI EN 300 328 REQUIREMENTS	9
5.1. RF OUTPUT POWER	9
5.2. POWER SPECTRAL DENSITY	18
5.3. ADAPTIVITY AND RECEIVER BLOCKING	26
5.4. OCCUPIED CHANNEL BANDWIDTH	33
5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	38
5.6 TRANSMITTER SPURIOUS EMISSIONS	42
5.7 RECEIVER SPURIOUS EMISSIONS	52
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	61

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at after://www.agc.cert.com.

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

No.16 E

1. TEST REPORT CERTIFICATION

Applicant	Vonino Electronics (HK) Limited		
Address	#1109, 11/F, Kowloon Center 33 Ashley Road , Tsim Sha Tsui, Kowloon, Hong Kong		
Manufacturer	Vonino Electronics (HK) Limited		
Address	#1109, 11/F, Kowloon Center 33 Ashley Road , Tsim Sha Ts Kong	ui, Kowloon, Hong	
Product Designation	Tablet PC		
Brand Name	Vonino	CO P	
Test Model	Navo S		
Date of test	Aug.09,2016 to Aug.17,2016	The the second	
Deviation	None	China C	
Condition of Test Sample	Normal	20 20	
Report Template	AGCRT-EC-BGN/RF	AL	

We, Attestation of Global Compliance (Shenzhen) Co., Ltd., for compliance with the requirements set forth in the European Standard ETSI EN 300 328 V1.9.1. The results of testing in this report apply to the product /system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By

Vota Zhang

Dota Zhang(Zhang Jianfeng)

Aug.17,2016

Reviewed By

Bong sie

Bart Xie(Xie Xiaobin)

May. 10, 2017

Approved By

Solya shory

Solger Zhang(Zhang Hongyi) Authorized Officer

May. 10, 2017

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

2. GENERAL INFORMATION

2.1. DESCRIPTION OF EUT

Note: the following data is based on the information by the applicant.

Hardware Version	YK86VS-3126-816-V1.0				
Software Version	vonino_v1.1.0_20170328	vonino_v1.1.0_20170328			
Operating Frequency	2.412 GHz~2.472GHz	2.412 GHz~2.472GHz			
Support Channels	13 Channels (IEEE802.1	1b/g/n)			
Modulation	CCK,OFDM,BPSK,GPSI	<,16-QAM,64-QAM			
Adaptive / non-adaptive equipment	Adaptive Equipment				
Antenna Type	PIFA antenna				
Antenna Gain	0.7dBi				
Power Supply	Normal Voltage: DC 3.7				
Channels Frequency	01: 2412MHZ 02: 2417MHZ 03: 2422MHZ 04: 2427MHZ 05: 2432MHZ 06: 2437MHZ 07: 2442MHZ	08: 2447MHZ 09: 2452MHZ 10: 2457MHZ 11: 2462MHZ 12: 2467MHZ 13: 2472MHZ			
	07: 2442MHZ	The Contraction of the Contraction			

Note:

- 1. For 802.11b, 802.11g, 802.11n 20MHZ bandwidth system use Channel 1 to Channel 13.
- For 802.11n 40MHZ bandwidth system use Channel 3 to Channel 11. 2.
- Please refer to Appendix I for the photographs of the EUT. For more details, please refer to the User's 3. manual of the EUT.

2.2. OBJECTIVE

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the R&TTE Directive (1999/5/EC) for the Bluetooth function of the EUT.

2.3. TEST STANDARDS AND RESULTS

GC

The EUT has been tested according to ETSI EN 300 328 V1.9.1

ETSI EN 300 328 V1.9.1 (2015-02)	Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; Data transmission equipment operating in the 2.4GHz
	ISM band and using spread spectrum modulation techniques: Part 2:
	Harmonized EN covering essential requirements under article 3.2 of the R&TTE
	Directive.

The results show the sample (s) test report refer only to the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

No.16

@ 400 089 2118

Attestation of Global Compliance Tel: +86-755 2908 1955 Fax: +86-755 2600 8484

E-mail: agc@agc-cert.com Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

2.4. TEST ITEMS AND THE RESULTS

No.	Basic Standard	Test Type	Result
1	ETSI EN 300 328 4.3.2.2	RF Output Power	Pass
2	ETSI EN 300 328 4.3.2.3	Power Spectral Density	Pass
3	ETSI EN 300 328 4.3.2.4	Duty Cycle, Tx-sequence, Tx-gap	N/A
4	ETSI EN 300 328 4.3.2.4	Medium Utilisation(MU) factor	N/A
5	ETSI EN 300 328 4.3.2.6	Adaptivity	Pass
6	ETSI EN 300 328 4.3.2.7	Occupied Channel Bandwidth	Pass
7	ETSI EN 300 328 4.3.2.8	Transmitter unwanted emissions in the out-of-band domain	Pass
8	ETSI EN 300 328 4.3.2.9	Transmitter unwanted emissions in the spurious domain	Pass
9	ETSI EN 300 328 4.3.2.10	Receiver spurious emissions	Pass
10	ETSI EN 300 328 4.3.2.11	Receiver Blocking	Pass
12	ETSI EN 300328 4.3.1.13	Geo-location capability	N/A

Note:

1. N/A- Not Applicable.

2. The latest versions of basic standards are applied.

2.5. ENVIRONMENTAL CONDITIONS

- Temperature: -20-55°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

The results showed first extrement refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

- Uncertainty of Radio Frequency, Uc=±1 x 10-7
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of spurious emissions, radiated, $Uc = \pm 5.4 dB$
- Uncertainty of Temperature: ±0.5°C
- Uncertainty of Humidity: ±1 %
- Uncertainty of DC and low frequency voltages: ±2%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Company Name:	Attestation of Global Compliance (Shenzhen) Co., Ltd.
Address 1:	2/F., Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China
Address 2:	B112-B113, Building 12, Baoan Building Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen, Guangdong, P.R.China

List of Equipments Used

AGC S

Description	Manufacturer	Model No.	S/N	Calibration Date	Calibration Due.
SIGNAL ANALYZER	Agilent	N9020A	MY49100060	Nov.09,2015	Nov.08,2016
SIGNAL GENERATOR	Agilent	N5182A	MY50140530	Oct.16, 2015	Oct.15,2016
SIGNAL GENERATOR	Agilent	E8257D	MY45141029	Oct.16, 2015	Oct.15,2016
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	Oct.16, 2015	Oct. 15,2016
USB Wideband Power Sensor	Agilent	U2021XA	MY54110009	Oct.16, 2015	Oct.15,2016
USB Wideband Power Sensor	Agilent	U2021XA	MY54110014	Oct.16, 2015	Oct.15,2016
USB Wideband Power Sensor	Agilent	U2021XA	MY54110012	Oct.16, 2015	Oct.15,2016
USB Simultaneous Sampling Multifunction DAQ	Agilent	U2531A	MY5211038	Oct.16, 2015	Oct.15,2016
2.4 GHz Filter	Micro-Tronics	BRM50702	017	Mar.01,2016	Feb.28,2017
VECTOR ANALYZER	Agilent	E4440A	MY44303916	July 02, 2016	July 01,2017
Trilog-Broadband Antenna	SCHWARZBEK	VULB 9168	VULB 9168-492	Mar.01, 2016	Feb.28,2017
Trilog-Broadband Antenna	SCHWARZBEK	VULB 9168	VULB 9168-494	Mar.12,2016	Mar.11,2017
Amplifier	EM	EM30180	060552	Feb.29,2016	Feb.28,2017
Horn Antenna	EM	EM-AH-10180	67	Mar.01,2016	Feb.28,2017

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

No.16 E

400 089 2118

E-mail: agc@agc-cert.com Attestation of Global Compliance Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

5. ETSI EN 300 328 REQUIREMENTS

5.1. RF OUTPUT POWER

5.1.1 LIMIT

RF Output Power <= 100mW (20dBm) over Normal and Extreme conditions.

5.1.2 MEASUREMENT PROCEDURE

- 1) Use a fast power sensor and set the samples speed 1MS/s or faster.
- 2) Connect one power sensor to each transmit port, Trigger the power sensors so that they start sampling at the same time. For each instant in time, sum the power of the individual samples of all ports and store them. Use these stored samples in all following steps.
- 3) Find the start and stop times of each burst in the stored measurement samples.
- 4) Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these Pburst values, as well as the start and stop times for each burst.
- 5) The highest of all Pburst values (Value "A" in dBm) will be used for maximum e.i.r.p calculations.
- 6) The cable loss and attenuator factor shall be considered to the value "A".
- 6) Add the (stated) antenna assembly gain "G" in dBi of the individual antenna. If applicable, add the additional beamforming gain "Y" in dB.
- 7) The RF output power (P) shall be calculated using the formula: P=A+G+Y

5.1.3 TEST CONFIGURATION

GC

Attestation of Global Compliance

Temperature and Voltage Measurement (under normal and extreme test conditions)

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

No.16 E

5.1.4 MEASUREMENT RESULTS

Operation Mode	Single TX	Test Date	Aug.17,2016
Temperature	23.6°C	Tested by	Dota
Humidity	50.1 % RH	Polarity	-3. P
Antenna assembly	Gain	= 0.7dBi	
Cable Loss		=1.0dB	
Beamforming gain		=0dB	He Frankling Fr
EIRP		= P+ Gain+Y	C Part C

TEST CONDITIONS		IEEE 802.11b TRANSMITTER POWER (dBm)			
IESI	CONDITIONS	Temp (25)°C	Temp (55)°C		
CHANNEL	VOL	DC 3.7V	DC 3.7V	DC 3.7V	
CH 01	EIRP	13.15	12.94	12.91	
CH 07	EIRP	12.92	12.64	12.69	
CH 13	EIRP	12.24	12.62	12.27	
The stand	Limit		20dBm		
Measurer	ment uncertainty		+ 0.28dB / - 0.30dB	The Second	
	Note	Only the	worst case data is reported	as below.	

1*802.11 b:CH Low-2412: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2412	Normal	12.45	13.15

The results shown the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

No.16 E

2*802.11 b:CH Mid-2442: (Temp - Normal)

3*802.11 b:CH High-2472: (Temp - Low)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2472	Normal	11.92	12.62

The results showing this jest eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

No.16 E

GC 5 Attestation of Global Compliance

L

E-mail: agc@agc-cert.com Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 **(**) 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC09377170502EE05 Page 12 of 61

TEST CONDITIONS		IEEE	IEEE 802.11g TRANSMITTER POWER (dBm)		
		Temp (25)°C	Temp (-20)°C	Temp (55)°C	
CHANNEL	VOL POWER	DC 3.7V	DC 3.7V	DC 3.7V	
CH 01	EIRP	10.62	10.27	10.26	
CH 07	EIRP	10.98	10.69	10.73	
CH 13	EIRP	10.48	10.81	10.44	
Ref. and	Limit	2 ³	20dBm		
Measure	ment uncertainty	No.	+ 0.28dB / - 0.30dB	The Therease	
0	Note Only the worst case data is reported as below.		ted as below.		

4*802.11 g:CH Low-2412: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2412	Normal	9.92	10.62

The results showing this est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

No.16 E

GC S Attestation of Global Compliance Tel: +86-755 2908 1955 Fax: +86-755 2600 8484

Ľ

E-mail: agc@agc-cert.com 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

5*802.11 g:CH Mid-2442: (Temp - Normal)

6*802.11 g:CH High-2472: (Temp - Low)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2472	Normal	10.11	10.81

GC

Attestation of Global Compliance

6

A

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Report No.: AGC09377170502EE05 Page 14 of 61

TEST CONDITIONS		IEEE 802.11n(20) TRANSMITTER POWER (dBm)		
		Temp (25)°C	Temp (-20)°C	Temp (55)°C
CHANNEL	VOL	DC 3.7V	DC 3.7V	DC 3.7V
CH 01	EIRP	10.68	10.27	10.35
CH 07	EIRP	10.98	10.66	10.63
CH 13	EIRP	10.38	10.41	10.72
Alt constant	Limit	2 ³ - C ³	20dBm	
Measurer	ment uncertainty	No.	+ 0.28dB / - 0.30dB	The The Second
Note Only the worst case data is reported as		as below.		

7*802.11 n20:CH Low-2412: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2412	Normal	9.98	10.68

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

8*802.11 n20:CH Mid-2442: (Temp - Normal)

9*802.11 n20:CH High-2472: (Temp - High)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)	1
CH High-2472	Normal	10.02	10.72	

GC

Attestation of Global Compliance

6

A

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Report No.: AGC09377170502EE05 Page 16 of 61

TEST CONDITIONS		IEEE 802.11n(40) TRANSMITTER POWER (dBm)		
		Temp (25)°C	Temp (-20)°C	Temp (55)°C
CHANNEL	VOL	DC 3.7V	DC 3.7V	DC 3.7V
CH 03	EIRP	9.43	9.12	9.15
CH 07	EIRP	9.62	9.24	9.27
CH 11	EIRP	9.35	9.04	9.06
Red constraints	Limit	2 ³ - C ³	20dBm	
Measurer	ment uncertainty	No	+ 0.28dB / - 0.30dB	The The Second
Note Only the worst case data i		e worst case data is reported	as below.	

10*802.11 n40:CH Low-2422: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH Low-2422	Normal	8.73	9.43

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

11*802.11 n40:CH Mid-2442: (Temp - Normal)

12*802.11 n40:CH High-2462: (Temp - Normal)

Channel	Voltage	Conducted Power (dBm)	EIRP (dBm)
CH High-2462	Normal	8.65	9.35

GC

Attestation of Global Compliance

6

A

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

5.2. POWER SPECTRAL DENSITY

5.2.1 LIMIT

For non-adaptive equipment using wide band modulations other than FHSS, The maximum Power spectral density is limited to 10mW Per MHz

5.2.2 TEST PROCEDURE

- 1) Set the frequency from 2400MHz to 2483.5MHz, use 10kHz RBW and 30kHz VBW for pre-scan. The number of sweep points shall be more than 8350. Wait for the trace to be completed and save the (trace) data set to a file.
- 2) Add up the values for amplitude (power) for all the samples in the file.
- Normalize the individual values for amplitude so that the sum is equal to the RF Output Power(e.i.r.p) measured in 5.1.
- 4)Starting from the first sample in the file (lowest frequency), add up the power of the following samples representing a 1MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p) for the first 1MHz segment which shall be recorded.
- 5) Shift the start point of the samples added up in step 5 by 1 sample and repeat the procedure in step 4(i.e. sample #2 to #101).
- Repeat step 5 until the end of the data set and record the radiated power spectral Density values for each of the 1MHz segments.
- 7) The cable loss and attenuator factor shall be considered to the test result.
- 8) The highest value shall be recorded in the test report.

5.2.3 TEST CONFIGURATION

Spectrum Analyzer

RF Cable

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by // GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gett.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 19 of 61

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.3.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.3.2 for the measurement method.
- 3 The equipment setting as following Start Frequency: 2 400 MHz
- Stop Frequency: 2 483,5 MHz
- Resolution BW: 10 kHz
- Video BW: 30 kHz
- Sweep Points: >8350
- Detector: RMS
- Trace Mode: Max Hold
- Sweep time: 10s

5.2.4 TEST RESULTS

IEEE 802.11b Power Spectral Density				
Channel Tested	Power Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail	
CH 01	4.46		Pass	
CH 07	4.28	10	Pass	
CH 13	4.29	10	Pass	

	IEEE 802.11g Power Spectral Density				
C	Channel Tested	Power Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail	
	CH 01	0.41	10	Pass	
12 3	CH 07	0.22	10	Pass	
Marcalon	CH 13	0.49	10	Pass	

IEEE 802.11n(20) Power Spectral Density			
Power Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail	
-0.62	10	Pass	
-0.40	10	Pass	
-0.46	10	Pass	
	IEEE 802.11n(20) Pow Power Density (dBm/MHz) -0.62 -0.40 -0.46	IEEE 802.11n(20) Power Spectral Density Power Density (dBm/MHz) Test Limit (dBm/MHz) -0.62 10 -0.40 10 -0.46 10	

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 20 of 61

IEEE 802.11n(40) Power Spectral Density			
Channel Tested	Power Density (dBm/MHz)	Test Limit (dBm/MHz)	Pass / Fail
CH 03	-3.32	10	Pass
CH 07	-3.87	10	Pass
CH 11	-4.13	10	Pass

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

No.16 E

Report No.: AGC09377170502EE05 Page 21 of 61

The results showing this est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

No.16 E

E-mail: agc@agc-cert.com Attestation of Global Compliance Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

GC

5

t

() 400 089 2118

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 22 of 61

The results showed final pest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 23 of 61

The results showed final pest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 24 of 61

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

Actestation of Global Compliance

Report No.: AGC09377170502EE05 Page 25 of 61

The results showed final pest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Attestation of Global Compliance

5.3. ADAPTIVITY AND RECEIVER BLOCKING

The method of adaptivity is using LBT based DAA

5.3.1 LIMIT

The Channel Occupancy Time shall be less than 13ms (the value of q equal to 32 which declared by manufacturer).

If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum duty cycle of 10 % within an observation period of 50 ms.

Equipment Type	Wanted signal mean	Blocking signal	Blocking	Type of
(LBT / non- LBT)	power from companion	frequency	signal power	interfering
	device	[MHz]	[dBm]	signal
LBT	sufficient to maintain the link (see note 2)	2 395 or 2 488,5	-35	CW
Non-LBT	-30 dBm	(see note 1)		
NOTE 1: The highest blocking frequency shall be used for testing operating channels within the range				n the range
2 400 MHz to 2 442 MHz, while the lowest blocking frequency shall be used for testing operating				
channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.3.7.1.				
UOTE 2: A turning local	lua which can be used in more	tennes in E0 dDm/ML		

Table 6: Receiver Blocking parameters

NOTE 2: A typical value which can be used in most cases is -50 dBm/MH.

5.3.2 TEST PROCEDURE

- The EuT connect to a companion device during the test. Adjust the received signal level at the EuT to the value of -50dBm/MHz.
- 2) the analyzer shall be set as below: RBW>=Occupied Channel Bandwidth and VBW>=3×RBW.
- 3) Configure the EuT for normal transmission with a sufficiently high payload to allow demonstration of compliance of the adaptive mechanism on the channel being tested.
- 4) Adding the interference signal and blocking signal.
- 5) Record the data.

5.3.3 TEST CONFIGURATION

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

The analyser shall be set as follows:

- RBW: use next available RBW setting below the measured Occupied Channel Bandwidth
- Filter type: Channel Filter
- VBW: ≥ RBW
- Detector Mode: RMS
- Centre Frequency: Equal to the hopping frequency to be tested
- Span: 0 Hz
- Sweep time: > Channel Occupancy Time of the UUT. If the Channel Occupancy Time is non-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out.
- Trace Mode: Clear/Write
- Trigger Mode: Video

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

5.3.4 TEST RESULTS

Test Channel 802.11b - 2412MHz		
Threshold Level (dBm/MHz)	evel (dBm/MHz) -63.15	
Blocking Interference Level (dBm)	-35.00	
Traffic Load	33.3%	
Max COT (ms)	0.18	Hanna and
Idle Time (ms)	0.30	
Pulse width (ms)	0.36	20
Duty Cycle (%)	0.72	

Note: 1)TL = -70 dBm/MHz + (20 dBm - Pout e.i.r.p)/1 MHz (Pout in dBm) 2)The UUT does not resume any normal transmission when adding the blocking signal at the frequency of 2488.5MHZ.It is deemed to comply with the receiver bloking requirement

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 29 of 61

Attestation of Global Compliance

The results show the hastest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

No.16 E

Report No.: AGC09377170502EE05 Page 30 of 61

Test Channel	802.11b - 2472MHz		
Threshold Level (dBm/MHz)	-62.62		
Blocking Interference Level (dBm)	-35.00		
Traffic Load	32.8%		
Max COT (ms)	0.06		
Idle Time (ms)	0.36		
Pulse width (ms)	0		
Duty Cycle (%)	0		

Note: 1)TL = -70 dBm/MHz + (20 dBm - Pout e.i.r.p)/1 MHz (Pout in dBm) 2)The UUT does not resume any normal transmission when adding the blocking signal at the frequency of 2395MHZ. It is deemed to comply with the receiver bloking requirement

The results showing this jest eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

GC 5 Attestation of Global Compliance

A

E-mail: agc@agc-cert.com Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

No.16 E

Report No.: AGC09377170502EE05 Page 31 of 61

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gert.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 32 of 61

Note: 1)All the modes had been tested, but only the worst data recorded in the report.2)When removal of the interference and blocking signal the UUT will be transmitting again on this channel.

Conclusion: PASS

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

 No.16 L

 Tel: +86-755 2908 1955
 Fax: +86-755 2600 8484
 E-mail: agc@agc-cert.com
 @ 400 089 2118

 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

5.4. OCCUPIED CHANNEL BANDWIDTH

5.4.1 LIMIT

The Occupied Channel Bandwidth shall fall completely within the band 2400MHz to 2483.5MHz.

5.4.2 TEST PROCEDURE

The spectrum analyser shall be used the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 %
- Video BW: 3 × RBW
- Frequency Span for frequency hopping equipment: Lowest frequency separation that is used within the

hopping sequence

• Frequency Span for other types of equipment: 2 × Nominal Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)

- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep time: 1 s

5.4.3 TEST CONFIGURATION

Spectrum Analyzer

RF Cable

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

5.4.4 TEST RESULTS

TEST ITEM	99% BANDWIDTH		14.11	The Party of the P
TEST MODE	802.11b with data rate 11	C Burner Count	The sound of	Hard Contract

LIMITS AND MEASUREMENT RESULT				
	Applicable Limits			
Test Da	ita (MHz)	Criteria		
Low Channel	12.860	PASS		
High Channel	12.431	PASS		
	LIMITS AND MEAS Test Da Low Channel High Channel	LIMITS AND MEASUREMENT RESULTApplicable LimitsTest Data (MHz)Low Channel12.860High Channel12.431		

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 35 of 61

TEST ITEM	99% BANDWIDTH	CG ³	Nos	200
TEST MODE	802.11g with data rate 54			

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance Tel: +86-

AGC 8

Report No.: AGC09377170502EE05 Page 36 of 61

TEST ITEM	99% BANDWIDTH	-C ⁸	Non	200
TEST MODE	802.11n(20) with data rate 65	2- A		A IN

	LIMITS AND MEASU	REMENT RESULT			
		Applicable Limits			
Applicable Limits	Test Data	a (MHz)	Criteria		
	Low Channel	18.035	PASS		
2400MHz-2483.5MHz	High Channel	17.725	PASS		
Center Freq 2.41200000 GHz WFGaint.ow Center Freq 2.41200000 GHz Center Freq 2.41200000 GHz Center 2.412 GHz #Res BW 430 kHz Center 2.412 GHz #Res BW 430 kHz Transmit Freq Error 65.119 kHz x dB Bandwidth 19.55 MHz	Prequence reg: 2.41200000 GHz Radio Std: None Radio Device: BTS Mkr1 2.40305 GHZ -2.2184 dBm Center 2.41200000 2.41200000 2.41200000 Center 2.412000000 Center 2.41200000 Ce	Freq D GHz Step MHz Man ffset 0 Hz			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gent.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 37 of 61

TEST ITEM	99% BANDWIDTH	C ³	Nor	200
TEST MODE	802.11n(40) with data rate 135	- THE		A TH

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

5.5.1 LIMIT

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask.

5.5.2 TEST PROCEDURE

1) The spectrum analyser shall be used the following settings:

- Centre Frequency: 2 484 MHz

0 Hz

Max Hold

- Span:
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode:
- Sweep Mode: Continuous
- Sweep Points: Sweep Time [s] / (1 µs) or 5 000 whichever is greater
- Trigger Mode: Video trigger
- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF
- Output Power
- 2) (segment 2 483.5 MHz to 2 483.5 MHz + BW)
 - Adjust the trigger level to select the transmissions with the highest power level.
 - Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483.5 MHz to 2 483.5 MHz + BW.
- 3) Segment 2 483.5 MHz + BW to 2 483.5 MHz + 2BW

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483.5 MHz + BW to 2 483.5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW – 0.5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

4) Segment 2 400 MHz - BW to 2 400 MHz

Change the centre frequency of the analyser to 2 399.5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0.5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

5) Segment 2 400 MHz - 2BW to 2 400 MHz - BW

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0.5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

6) The cable loss and attenuator factor shall be considered to the test result.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 39 of 61

5.5.3 TEST CONFIGURATION

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

N0.16 E ax: +86-755 2600 8484 E-mail: agc@agc-cert.com

5.5.4 TEST RESULT

TEST CONDITIONS	IEEE 802.11b OUT-OF-BAND DOMAIN			
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C	
CHANNEL	DC 3.7V	DC 3.7V	DC 3.7V	
Low channel	PASS	PASS	PASS	
High channel	PASS	PASS	PASS	
			- M	

TEST CONDITIONS	IEEE 802.11g OUT-OF-BAND DOMAIN				
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C		
CHANNEL	DC 3.7V	DC 3.7V	DC 3.7V		
Low channel	PASS	PASS	PASS		
High channel	PASS	PASS	PASS		

TEST CONDITIONS	IEEE 802.11n(20) OUT-OF-BAND DOMAIN				
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C		
CHANNEL	DC 3.7V	DC 3.7V	DC 3.7V		
Low channel	PASS	PASS	PASS		
High channel	PASS	PASS	PASS		
Low channel High channel	PASS	PASS	PASS		

TEST CONDITIONS	IEEE 802.11(40) OUT-OF-BAND DOMAIN				
TEST CONDITIONS	Temp (25)°C	Temp (-20)°C	Temp (55)°C		
CHANNEL	DC 3.7V	DC 3.7V	DC 3.7V		
Low channel	PASS	PASS	PASS		
High channel	PASS	PASS	PASS		

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

AGC ? Attestation of Global Compliance

E-mail: agc@agc-cert.com 400 089 2118 Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC09377170502EE05 Page 41 of 61

CH Low-2412 (802.11b)

CH High-2472 (802.11b)

GC

Attestation of Global Compliance

0

L

Note: All the modes had been tested, but only the worst data recorded in the report.

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

5.6 TRANSMITTER SPURIOUS EMISSIONS

Spurious emissions are emissions outside the frequency range(s) of the equipment as defined

in Clause 4.3.1.10.Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain as indicated in figure 1 when the equipment is in Transmit mode.

The spurious emissions of the transmitter shall not exceed the values in tables in the indicated bands: Limit

Frequency Range	Maximum Power	Bandwidth
	e.r.p(<=1GHz)/e.i.r.p(>1GHz)	
30MHZ to 47MHZ	-36dBm	100kHz
47MHZ to 74MHZ	-54dBm	100kHz
74MHZ to 87.5MHZ	-36dBm	100kHz
87.5MHZ to 118MHZ	-54dBm	100kHz
118MHZ to 174MHZ	-36dBm	100kHz
174 MHZ to 230MHZ	-54dBm	100kHz
230 MHZ to 470MHZ	-36dBm	100kHz
470 MHZ to 862MHZ	-54dBm	100kHz
862 MHZ to 1GHZ	-36dBm	100kHz
1 GHZ to 12.75GHZ	-30dBm	1MHz

Note: In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted) and to the emissions radiated by the cabinet. In case of integral antenna equipment (without temporary antenna connectors), these limits apply to emissions radiated by the equipment. **TEST PROCEDURE**

Refer to chapter 5.3.10.2 of ETSI EN 300 328 V1.9.1

Measurement

	Measur	ement	
Cond	ucted measurement	Radiated meas	urement

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 43 of 61

CONDUCTED MEASUREMENT

TEST CONFIGURATION

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gert.com.

N0.16 E 86-755 2600 8484 E-mail: agc@agc-cert.com

TEST RESULT

(Worst Case: Low channel, 11B)

Channel	Peak Result	RMS Result
CH Low-2412	Pass	-

Freq	RMS Level (dBm)	Limit (dBm)	Over Limit (dB)	Status
792.185	-80.12	-54.00	-26.12	Pass
837.912	-79.79	-54.00	-25.79	Pass
9321.000	-65.48	-30.00	-35.48	Pass
9376.000	-65.12	-30.00	-35.12	Pass
2000 L				

The results shown the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

(Worst Case: High channel, 11B)

(WOISt Case. mg	jii channel, TD)			
Chan	nel	Peak Result Pass		IS Result
CH High	-2472			-
		18 A.	not Galler	a diana
Freq	RMS Level (dBm)	Limit (dBm)	Over Limit (dB)	Status
790.725	-79.73	-54.00	-25.73	Pass
828.182	-74.68	-54.00	-20.68	Pass
5644.000	-65.31	-30.00	-35.31	Pass
6339.000	-65.25	-30.00	-35.25	Pass

Note: 1. All the modes had been test but only the worst data record in the report.

- 2. The 2.4G fundamental frequency is filtered out.
- 3. The effective radiated power has been considered in this test.

Conclusion: PASS

The results showed finances to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cent.com.

Report No.: AGC09377170502EE05 Page 46 of 61

RADIATED MEASUREMENT TEST SETUP

1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).

2. The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.

3. The equipment was configured to operate under its worst case situation with respect to output power.

4. The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

Reference ground plane

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 47 of 61

Above 1GHz

Radiated Method

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.geit.com.

Attestation of Global Compliance

GC S

Attestation of Global Compliance

≁

SPURIOUS EMISSION OPERATING CHANNEL 30MHz ~ 1GHz Low **FREQUENCY RANGE** Antenna Frequency (MHz) Level (dBm) Limit (dBm) Margin (dB) **Polarization** -27.9 39.67 н -63.9 -36 66.17 Н -69.53 -54 -15.53163.45 -64.5 -36 -28.5 Н 386.27 н -71.59 -36 -35.59 796.82 Н -70.03 -54 -16.03 878.43 н -65.13 -36 -29.13 V -70.97 -54 52.59 -16.97 V -54 180.21 -66.82 -12.82123.19 V -64.37 -36 -28.37 V 200.58 -68.45 -54 -14.45 333.75 V -36 -71.13 -35.13 879.46 V -64.96 -36 -28.96 30MHz ~ 1GHz н -36 >10 ----30MHz ~ 1GHz -36 V -->10 30MHz ~ 1GHz Н -----54 >10 30MHz ~ 1GHz V -54 >10 ۰.

TEST RESULTS for Radiated Method Transmitter Operating Mode (Worst case: 11B)

NOTE: 1. The emission behavior belongs to narrowband spurious emission.

2. The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

No.16 E

Report No.: AGC09377170502EE05 Page 49 of 61

SPURIOUS EMISSION FREQUENCY RANGE	30MHz ~ 1GHz		OPERATING	CHANNEL	High
Frequency (MHz)		Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
39.7	12	Н	-64.09	-36	-28.09
55.46	The Come	H. San	-68.66	-54	-14.66
144.14	alon al Co	H	-62.42	-36	-26.42
363.19	-	H N	-70.93	-36	-34.93
735.32	2	Н	-67.39	-54	-13.39
895.29		, ⊛ H	-63.22	-36	-27.22
70.67	3	V	-69	-54	-15
213.41	C.*	V	-67.68	-54	-13.68
138.91		V	-64.37	-36	-28.37
176.51		V	-66.01	-54	-12.01
362.52		V	-74.18	-36	-38.18
949.47	19	V	-66.11	-36	-30.11
30MHz ~ 1GHz		H C		-36	>10
30MHz ~ 1GHz	C.*	V C		-36	>10
30MHz ~ 1GHz		Н		-54	>10
30MHz ~ 1GHz		V	17	-54	>10

NOTE: 1. The emission behavior belongs to narrowband spurious emission.

鑫 宇 坏 应 测 Attestation of Global Compliance

2. The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

	P	Standby Mode:	The Total Car	- 3 M	20
NO.	Frequency	Measurement Bandwidth	Level	Limit	Margin
	MHz	KHz	dBm	dBm	dB
Standby M	ode ,Antenna Pola	rization: Vertical			
1	30-1000	100	1-0	-54	>20
2	30-1000	100	NO	-36	>20
Standby M	ode ,Antenna Pola	rization: Horizontal			
1	30-1000	100	F. F. Com	-54	>20
2	30-1000	100		-36	>20

Conclusion: PASS

Attestation of Global Compliance

The results showed first export refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

No.16 E

Report No.: AGC09377170502EE05 Page 50 of 61

Above 1GHz (1GHz-12.75GHz)

NO. MHz KHz EIRP dBm dB TX:2412MHz ,Antenna Polarization: Vertical		Frequency	Measurement Bandwidth	Level	Limit	Margin
TX:2412MHz ,Antenna Polarization: Vertical 1 4824 1000 -48.93 -30 >10 2 7236 1000 -51.64 -30 >40 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 7236 1000 -52.77 -30 >10 -30 >40 2 7236 1000 -49.67 -30 >10 -30 >40 3 9648 1000 -49.67 -30 >40 -30 >40 4 12060 1000 \ -30 >40 -30 >40 5 Other(100-12750) 1000 \ -30 >40 -30 >40 1 4884 1000 -51.98 -30 >10 -30 >40 2 7326 1000 \ <t< th=""><th>NO.</th><th>MHz</th><th>KHz</th><th>EIRP</th><th>dBm</th><th>dB</th></t<>	NO.	MHz	KHz	EIRP	dBm	dB
1 4824 1000 -48.93 -30 >10 2 7236 1000 -51.64 -30 >10 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 7236 1000 - -30 >40 72412MHz ,Antenna Polarization: Horizontal - <	TX:2412M	Hz ,Antenna Polarizatio	n: Vertical			
2 7236 1000 -51.64 -30 >10 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2412WF Antenna Polarization: Horizontal - </td <td>1.10</td> <td>4824</td> <td>1000</td> <td>-48.93</td> <td>-30</td> <td>>10</td>	1.10	4824	1000	-48.93	-30	>10
3 9648 1000 \ 30 >40 4 12060 1000 \ 30 >40 5 Other(100-12750) 1000 \ 30 >40 TX:2412WHz_Anterna Polarization: Horizontal	2	7236	1000	-51.64	-30	>10
4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2412WHz_Antenna Polarization: Horizontal >10 1 4824 1000 -52.77 -30 >10 2 7236 1000 -49.67 -30 >10 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(100-12750) 1000 \ -30 >40 2 7326 1000 -51.98 -30 >10 3 9768 1000 \ -30 >40 5 Other(100-12750) 1000 \ -30 >40 1 4884 1000 -55.53 -30 >10 2 7326 1000 \	3	9648	1000	The Will and	-30	>40
5 Other(1000-12750) 1000 \ 30 >40 TX:2412MHz ,Antenna Polarization: Horizontal	4	12060	1000	and and	-30	>40
TX:2412MHz Antenna Polarization: Horizontal 1 4824 1000 -52.77 -30 >10 2 7236 1000 -49.67 -30 >10 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(100-12750) 1000 \ -30 >40 1 4884 1000 -51.98 -30 >10 2 7326 1000 -54.34 -30 >10 2 7326 1000 -54.34 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(100-12750) 1000 \ -30 >40 1 4884 1000 -53.53 -30 >10 2 7326 1000 -0 -30 >40 1	5	Other(1000-12750)	1000	۱ Þ	-30	>40
1 4824 1000 -52.77 -30 >10 2 7236 1000 -49.67 -30 >10 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(100-12750) 1000 \ -30 >40 TX:2442MHz Antenna Polarization: Vertical	TX:2412M	Hz ,Antenna Polarizatio	n: Horizontal			
2 7236 1000 -49.67 -30 >10 3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz ,Antenna Polarization: Vertical - - - - - - - - - 40 1 4884 1000 -51.98 -30 >10 - <td>1</td> <td>4824</td> <td>1000</td> <td>-52.77</td> <td>-30</td> <td>>10</td>	1	4824	1000	-52.77	-30	>10
3 9648 1000 \ -30 >40 4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz ,Antenna Polarization: Vertical	2	7236	1000	-49.67	-30	>10
4 12060 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz ,Antenna Polarization: Vertical	3	9648	1000		-30	>40
5 Other(1000-12750) 1000 \ 30 >40 TX:2442MHz ,Antenna Polarization: Vertical 1 4884 1000 -51.98 -30 >10 2 7326 1000 -54.34 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 7X:2442MHz ,Antenna Polarization: Horizontal -30 >40 >40 1 4884 1000 -53.53 -30 >10 2 7326 1000 -50.51 -30 >40 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5	4	12060	1000	The	-30	>40
TX:2442MHz ,Antenna Polarization: Vertical 1 4884 1000 -51.98 -30 >10 2 7326 1000 -54.34 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 1 4884 1000 -53.53 -30 >10 2 7326 1000 \ -30 >40 1 4884 1000 -53.53 -30 >10 2 7326 1000 \ -30 >40 1 4884 1000 \ -30 >40 2 7326 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(5	Other(1000-12750)	1000		-30	>40
1 4884 1000 -51.98 -30 >10 2 7326 1000 -54.34 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz ,Antenna Polarization: Horizontal	TX:2442M	Hz ,Antenna Polarizatio	n: Vertical			
2 7326 1000 -54.34 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz Antenna Polarization: Horizontal	1	4884	1000	-51.98	-30	>10
3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz ,Antenna Polarization: Horizontal -30 >40 >40 1 4884 1000 -53.53 -30 >10 2 7326 1000 -50.51 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 </td <td>2</td> <td>7326</td> <td>1000</td> <td>-54.34</td> <td>-30</td> <td>>10</td>	2	7326	1000	-54.34	-30	>10
4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2442MHz ,Antenna Polarization: Horizontal 1 4884 1000 -53.53 -30 >10 2 7326 1000 \ -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 7X:2472MHz ,Antenna Polarization: Vertical	3	9768	1000	\	-30	>40
5 Other(1000-12750) 1000 \ 30 >40 TX:2442MHz ,Antenna Polarization: Horizontal 1 4884 1000 -53.53 -30 >10 2 7326 1000 -50.51 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	4	12210	1000	- N	-30	>40
TX:2442MHz ,Antenna Polarization: Horizontal 1 4884 1000 -53.53 -30 >10 2 7326 1000 -50.51 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2472MHz ,Antenna Polarization: Vertical 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	5	Other(1000-12750)	1000	1	-30	>40
1 4884 1000 -53.53 -30 >10 2 7326 1000 -50.51 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2472MHz ,Antenna Polarization: Vertical -30 >10 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	TX:2442M	Hz ,Antenna Polarizatio	n: Horizontal			
2 7326 1000 -50.51 -30 >10 3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2472MHz ,Antenna Polarization: Vertical 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	1	4884	1000	-53.53	-30	>10
3 9768 1000 \ -30 >40 4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2472MHz ,Antenna Polarization: Vertical 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	2	7326	1000	-50.51	-30	>10
4 12210 1000 \ -30 >40 5 Other(1000-12750) 1000 \ -30 >40 TX:2472MHz ,Antenna Polarization: Vertical 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	3	9768	1000	E. Torde	-30	>40
5 Other(1000-12750) 1000 \ -30 >40 TX:2472MHz ,Antenna Polarization: Vertical 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	4	12210	1000	۸ 🖡	-30	>40
TX:2472MHz ,Antenna Polarization: Vertical 1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	5	Other(1000-12750)	1000	μ. γ	-30	>40
1 4944 1000 -55.44 -30 >10 2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	TX:2472M	Hz ,Antenna Polarizatio	n: Vertical			
2 7416 1000 -56.04 -30 >10 3 9888 1000 \ -30 >40	G 1	4944	1000	-55.44	-30	>10
3 9888 1000 \ -30 >40	2	7416	1000	-56.04	-30	>10
	3	9888	1000	ETA	-30	>40

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

No.16 E

AGC 8 Attestation of Global Compliance

E-mail: agc@agc-cert.com Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC09377170502EE05 Page 51 of 61

4	12360	1000		-30	>40
5	Other(1000-12750)	1000		-30	>40
TX:2472	MHz ,Antenna Polarizatio	on: Horizontal			
1	4944	1000	-51.52	-30	>10
2	7416	1000	-51.43	-30	>10
3	9888	1000		-30	>40
4	12360	1000	The The Manual	-30	>40
5	Other(1000-12750)	1000		-30	>40
Measure	ment uncertainty:±3.2dB	.00 .00	A N		K TH

	Standby Mode:											
NO.	Frequency	requency Measurement Bandwidth			nit	Margin						
	MHz	KHz	dBm	n dE	ßm	dB						
Standby Mode ,Antenna Polarization: Vertical												
1	1000-12750	1000	C Province V	-3	80	>20						
Standby N	lode ,Antenna Pola	rization: Horizontal										
1	1000-12750	1000	1	-3	80	>20	_					

Conclusion: PASS

Attestation of Global Compliance

The results shown the set report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com. No.16 E

E-mail: agc@agc-cert.com 400 089 2118 Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

5.7 RECEIVER SPURIOUS EMISSIONS

The level of spurious emissions shall be measured as, either:

a) Their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or

b) Their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no temporary antenna connectors.

Testing shall be performed when the equipment is in a receive-only mode. **LIMIT**

Frequency range	Maximum power, e.r.p.	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

Note: In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted) and to the emissions radiated by the cabinet. In case of integral antenna equipment (without temporary antenna connectors), these limits apply to emissions radiated by the equipment.

TEST PROCEDURE

Refer to chapter 5.3.11.2 of ETSI EN 300 328 V1.9.1

Measurement

The second secon	/leasurement
Conducted measurement	Radiated measurement

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

NO.

Report No.: AGC09377170502EE05 Page 53 of 61

CONDUCTED MEASUREMENT

TEST CONFIGURATION

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

TEST RESULT

(Worst Case: Low channel, 11B)

Channel	Peak Result	RMS Result
CH Low-2412	Pass	-

Freq	RMS Level (dBm)	Limit (dBm)	Over Limit	Status
829.058	-77.70	-57.00	-20.70	Pass
860.386	-79.28	-57.00	-22.28	Pass
12289.000	-64.91	-47.00	-17.91	Pass
12653.000	-64.90	-47.00	-17.90	Pass

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Attestation of Global Compliance

(Worst Case: High channel, 11B)

nel	Peak Result	IS Result		
-2472	Pass			
	4 × 6 1	and Caller the the	a distance	
RMS Level (dBm)	Limit (dBm)	Over Limit (dB)	Status	
-79.13	-57.00	-22.13	Pass	
-79.28	-57.00	-22.28	Pass	
-64.84	-47.00	-17.84	Pass	
-65.25	25 -47.00		Pass	
	nel -2472 RMS Level (dBm) -79.13 -79.28 -64.84 -65.25	Peak Result -2472 Pass RMS Level (dBm) Limit (dBm) -79.13 -57.00 -79.28 -57.00 -64.84 -47.00 -65.25 -47.00	nel Peak Result RM -2472 Pass RMS Level (dBm) Limit (dBm) Over Limit (dB) -79.13 -57.00 -22.13 -79.28 -57.00 -22.28 -64.84 -47.00 -17.84	

Conclusion: PASS

The results showing this est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

GC 5 Attestation of Global Compliance

≁

E-mail: agc@agc-cert.com Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 400 089 2118 Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Report No.: AGC09377170502EE05 Page 56 of 61

RADIATED MEASUREMENT TEST SETUP

1 For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).

2 Testing was performed when the equipment was in a receive-only mode.

3 The measurements were performed when normal hopping was disabled. In this case measurements were performed when operating at the lowest and the highest hopping frequency.

4 The test setup has been constructed as the normal use condition. Controlling software (Button Function) has been activated to set the EUT on specific status.

TEST CONFIGURATION

Radiated Method: Same as section 4.6 in this test report

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
84.39	30.37	V C	-70.25	0.23	0.55	-69.93	-57	-12.93
129.59	30.89	V	-71.27	0.3	0.42	-71.15	-57	-14.15
239.7	30.46	V	-70.07	0.39	0.31	-70.15	-57	-13.15
325.23	30.65	V	-69.46	0.55	0.84	-69.17	-57	-12.17
334.22	30.73	V	-70.06	0.59	0.35	-70.3	-57 🍃	-13.3
827.67	30	V	-70.12	0.73	0.81	-70.04	-57	-13.04
The Bernard	16 K	11 S	A	-	- C.3		9	N
83.12	30.13	Н	-70.71	0.2	0.69	-70.22	-57	-13.22
130.25	29.88	СН	-69.27	0.34	0.28	-69.33	-57	-12.33
242.29	30.35	Н	-70.35	0.46	0.39	-70.42	-57	-13.42
325.22	30.83	H	-70.22	0.48	0.41	-70.29	-57	-13.29
734.39	30.78	HO	-70.76	0.68	0.45	-70.99	-57	-13.99
827.14	30.26	Н	-70.08	0.71	0.6	-70.19	-57	-13.19
Alte:	AF TH	AF ST	Com	A Same	- Cit	20	1	NO ⁻
30MHz ~ 1GHz	The start	V	GO		<u>NO-</u>		-57	>10
30MHz ~ 1GHz	>	н			Alle Bar		-57	>10

TEST RESULTS for Radiated Method (Worst case : 11B)

鑫 宇 环 检 测 Attestation of Global Compliance

GC

A

Low Channel: Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Note: The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Report No.: AGC09377170502EE05 Page 58 of 61

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
84.08	31.2	V	-70.62	0.21	0.37	-70.46	-57	-13.46
129.47	31.16	V	-71.27	0.28	0.46	-71.09	-57	-14.09
239.78	30.07	V	-69.45	0.37	0.34	-69.48	-57	-12.48
325.82	30.13	V	-70.37	0.53	0.85	-70.05	-57	-13.05
334.44	30.85	V	-70.49	0.57	0.42	-70.64	-57	-13.64
827.48	31.22	V	-70.75	0.71	0.86	-70.6	-57	-13.6
		Inte	AT TH	12.	Dr. Come	F Jucon	- 6.8	c.C
83.1	31.17	Н	-69.43	0.18	0.72	-68.89	-57	-11.89
130.44	29.82	- CH	-70.76	0.32	0.33	-70.75	-57	-13.75
242.09	30.53	Н	-70.46	0.44	0.45	-70.45	-57	-13.45
325.17	29.99	H	-70.56	0.46	0.49	-70.53	-57	-13.53
734.37	30.57	H	-69.99	0.66	0.47	-70.18	-57	-13.18
827.74	31.14	н	-70.37	0.69	0.64	-70.42	-57	-13.42
			The state	一位	10 E 3	Ford Gene	The South	- 6
30MHz ~ 1GHz	The Harding	V		Frank Carlo	de P	-00	-57	>10
30MHz ~ 1GHz		Он	GU				-57	>10

High Channel: Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Note: The margins of the other spectrum below 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

GC S

Attestation of Global Compliance

L

Report No.: AGC09377170502EE05 Page 59 of 61

Frequency	Reading	Antenna	SG	Cable	Ant Gain	Emission	Limit	Margin
Trequency	Level	Antonna	0.0.	Loss	Antioan	Level		margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1347.84	38.1	V	-62.86	2.18	0.72	-64.32	-47	-17.32
The Second	SCO.	V					- 1	- 4
		V	10 10	the The	- ~*		4 <u>10</u>	(Barris
10 m-	-	V		F. Jone	The second	- CO		
- 5	Johns Country	V	c.E	- 6	J			
-G	🖌	V			. 1 1 -			The Conve
	I	-11	line -	. 1	Contraction	F Steel	- 6.2	20
1447.82	38.43	H A	-62.23	2.37	0.24	-64.36	-47	-17.36
Barris -	A start	CH CH		<u> </u>	20		10:	- 56
	- 2	РН	_		- Th 18	Tr	12 min	A A A A A A A A A A A A A A A A A A A
<u> </u>		s H. [™]	- Th	Bartin	B.J.	C.ª./	-0	
- TA 12		H	\$ <u>2</u>	-0 ¹		<u> </u>	1	-
- B. 2	C _C	HO		<u>F.</u>		The Party of the P	- T. 10	
			AL THE	人也		Fallocom	The second con	- G
1GHz-12.75 GHz	TA TE THE	V		The second	CC*	NO	-47	>10
1GHz-12.75 GHz		н	<u>8</u>				-47	>10

Low Channel: Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: The margins of the other spectrum above 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Report No.: AGC09377170502EE05 Page 60 of 61

	1 Sec. 10	210	6.692		1000	/		
Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuv)	Polarizati on	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
1347.71	38.35	V	-62.83	2.18	0.47	-64.54	-47	-17.54
Frank and	SCO.	V		-				- 4
		V	10 11	The P	- ~*	- S	F. The	the second
10 m	12 P	V		F. Martin	A Carlor	00		
-	Sala Contra	V	c Đ	6	J			-
G		V	-			The P	- 4	The Contract
			line -	. 7	C. a Comment	of the second	6.3	-C
1447.31	38.48	H S	-62.25	2.44	0.22	-64.47	-47	-17.47
A start	Real Provention	- CH			20		-10-	
5		Ч			- Th 12	- T	Constanting	A A A
		H	Tr.	Baller	B.J.	C.ª./	-0	-
N. A.		H	\$ <u>2</u>	-00		<u> </u>	1	-
A state	CC.	HO		1	-	A North	- TA 10	
			E P	· B	e a e	F a coon	The start of	- 6
1GHz-12.75 GHz	TA BE	V	-6	Andrea -	CC.	NOC	-47	>10
1GHz-12.75 GHz		н	<u> </u>	1	RT.		-47	>10

High Channel: Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: The margins of the other spectrum above 1GHz are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

Remarks:

1. The emission behaviour belongs to narrowband spurious emission.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Conclusion: PASS

Attestation of Global Compliance

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Report No.: AGC09377170502EE05 Page 61 of 61

APPENDIX A: PHOTOGRAPHS OF TEST SETUP RADIATED SPURIOUS EMISSION TEST SETUP

--- END OF REPORT----

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance