

Global United Technology Services Co., Ltd.

Report No.: GTS201709000150E02

SPECTRUM REPORT (Bluetooth)

Applicant: Vonino Electronics Limited

UNIT 1109, 11/F., KOWLOON CENTRE 33 ASHLEY ROAD. **Address of Applicant:**

TSIM SHA TSUI. KOWLOON, HONG KONG

Manufacturer: Vonino Electronics Limited

Address of UNIT 1109, 11/F., KOWLOON CENTRE 33 ASHLEY ROAD.

TSIM SHA TSUI, KOWLOON, HONG KONG Manufacturer: Shenzhen Universal IoT Corporation Limited **Factory:**

Address of Factory: 1/3/4/5/F, Building 4, Baokun Science and Technology Industrial

Park, Dalang Street, Longhua Town, Baoan District, Shenzhen,

China

Equipment Under Test (EUT)

Product Name: MID

Model No.: Magnet W10

ETSI EN 300 328 V2.1.1 (2016-11) **Applicable standards:**

Date of sample receipt: September 19, 2017

Date of Test: September 20-25, 2017

Date of report issue: September 26, 2017

PASS * Test Result:

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

2 Version

Version No.	Date	Description
00	September 26, 2017	Original

Prepared By:	Joseph Cly	Date:	September 26, 2017	
	Project Engineer			_
Check By:	Andy w	Date:	September 26, 2017	
	Poviouer			

3 Contents

			Page
1	COVER	PAGE	1
2	VERSIO	DN	2
3	CONTE	NTS	3
4	TEST S	UMMARY	4
5	GENER	AL INFORMATION	5
	5.1 G	ENERAL DESCRIPTION OF EUT	5
		ST FACILITY	
	5.3 TE	ST LOCATION	7
		SCRIPTION OF SUPPORT UNITS	
		EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
	5.7 O	THER INFORMATION REQUESTED BY THE CUSTOMER	7
6	TEST I	NSTRUMENTS LIST	8
7	RADIO	TECHNICAL SPECIFICATION IN ETSI EN 300 328	10
	7.1 TE	ST ENVIRONMENT AND MODE	10
	7.2 TR	ANSMITTER REQUIREMENT	11
	7.2.1	RF Output Power	
	7.2.1	Power Spectral Density	
	7.2.2	Occupied Channel Bandwidth	
	7.2.3	Transmitter unwanted emissions in the OOB domain	
	7.2.4	Transmitter unwanted emissions in the spurious domain	
		CEIVER REQUIREMENT	
	7.3.1	Spurious Emissions	
	7.3.2	Receiver Blocking	31
8	TEST S	ETUP PHOTO	33
9	FUT CO	ONSTRUCTIONAL DETAILS	33

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

4 Test Summary

Radio Spectrum Matter (RSM) Part of Tx							
Test	Test Requirement	Test method	Limit/Severity	Uncertainty	Result		
RF Output Power	Clause 4.3.2.2	Clause 5.4.2.2	20dBm	±1.5dB	PASS		
Power Spectral Density	Clause 4.3.2.3	Clause 5.4.3.2	10dBm/MHz	±3dB	PASS		
Duty Cycle, Tx- sequence, Tx-gap	Clause 4.3.2.4	Clause 5.4.2.2.1.3	Clause 4.3.2.4.3	±5 %	N/A		
Medium Utilisation (MU) factor	Clause 4.3.2.5	Clause 5.4.2.2.1.4	≤ 10%	±5 %	N/A		
Adaptivity	Clause 4.3.2.6	Clause 5.4.6.2	Clause 4.3.2.6.2.2 & Clause 4.3.2.6.3.2 & Clause 4.3.2.6.4.2		N/A		
Occupied Channel Bandwidth	Clause 4.3.2.7	Clause 5.4.7.2	Clause 4.3.2.7.3	±5 %	PASS		
Transmitter unwanted emissions in the OOB domain	Clause 4.3.2.8	Clause 5.4.8.2	Clause 4.3.2.8.3	±3dB	PASS		
Transmitter unwanted emissions in the spurious domain	Clause 4.3.2.9	Clause 5.4.9.2	Clause 4.3.2.9.3	±6dB	PASS		
	Radio Spectrum Matter (RSM) Part of Rx						
Receiver spurious emissions	Clause 4.3.2.10	Clause 5.4.10.2	Clause 4.3.2.10.3	±6dB	PASS		
Receiver Blocking	Clause 4.3.2.11	Clause 5.4.11.2	Clause 4.3.2.11.4		PASS		
Geo-location capability	Clause 4.3.2.12				N/A		

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

Temperature (Uncertainty): ±1°C Humidity(Uncertainty): ±5%

Uncertainty: \pm 3%(for DC and low frequency voltages)

5 General Information

5.1 General Description of EUT

Product Name:	MID
Model No.:	Magnet W10
Operation Frequency:	2402~2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation technology:	GFSK
Bluetooth Version:	V4.0
Antenna Type:	Integral antenna
Antenna gain:	0dBi (declare by Applicant)
Power Supply:	DC3.7V (2 x 3.7V 7800mAh Rechargeable battery) Adaptor Model :CMW05020-001 Input: AC 100-240V, 50-60Hz, 0.2A Output: DC 5V, 2A

Operation I	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
. !!	. !	•	. !	. !	. !	• !	•
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

The test frequencies are below:

Channel	Frequency (MHz)
Lowest:	2402
Middle:	2440
Highest:	2480

5.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.3 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Deviation from Standards

None.

5.6 Abnormalities from Standard Conditions

None.

5.7 Other Information Requested by the Customer

None.

6 Test Instruments List

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	er Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 28 2017	June. 27 2018	
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 28 2017	June. 27 2018	
5	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 28 2017	June. 27 2018	
6	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June. 28 2017	June. 27 2018	
7	RF Amplifier	HP	8347A	GTS204	June. 28 2017	June. 27 2018	
8	RF Amplifier	HP	8349B	GTS206	June. 28 2017	June. 27 2018	
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 28 2017	June. 27 2018	
10	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June. 28 2017	June. 27 2018	
11	Universal Radio Communication tester	ROHDE&SCHWARZ	CMU 200	GTS538	June. 28 2017	June. 27 2018	
12	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
13	Coaxial cable	GTS	N/A	GTS210	N/A	N/A	
14	Coaxial Cable	GTS	N/A	GTS211	N/A	N/A	
15	Thermo meter	N/A	N/A	GTS256	June. 28 2017	June. 27 2018	

Cond	Conducted:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	MY51110321	June. 01 2017	June. 01 2018	
2	MXG vector Signal Generator	Agilent	N5182A	MY47070255	June. 01 2017	June. 01 2018	
3	ESG Analog Signal Generator	Agilent	E4428C	MY47381216	June. 01 2017	June. 01 2018	
4	USB RF Power Sensor	DARE	RPR3006W	16I00054SNO18	June. 01 2017	June. 01 2018	
5	USB RF Power Sensor	DARE	RPR3006W	16I00054SNO19	June. 01 2017	June. 01 2018	
6	RF Switch Box	Shongyi	RFSW3003328	RFSW170511	June. 01 2017	June. 01 2018	
7	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	WH20170602001	June. 01 2017	June. 01 2018	

7 Radio Technical Specification in ETSI EN 300 328

7.1 Test Environment and Mode

Test mode:					
Transmitting mode:		Keep the	e EUT in transmitting mode with mo	odulation.	
Receiving mode		Keep the	e EUT in receiving mode.		
Operating Environme	ent:				
lt a m	Normal condition		Extreme condition		
Item			LVHT	LVLT	
Temperature	+2	5°C	+45°C	0°C	
Humidity	20%-95%				
Atmospheric Pressure:	1008 mbar				

Setting	Value
Modulation	GFSK
Adaptive	Yes
Antenna Gain	2.0dBi
Nominal Channel Bandwidth	1.2MHz
DUT Frequency not configurable	No
Frequency Low	2402MHz
Frequency Mid	2440MHz
Frequency High	2480MHz

7.2 Transmitter Requirement

7.2.1 RF Output Power

Test Requirement:	ETSI EN 300 328 clause 4.3.2.2
Test Method:	ETSI EN 300 328 clause 5.4.2.2.1.2
Limit:	20dBm
Test setup:	Attenuator & DC Block DC Block Power Supply Power sensor
Test procedure:	Step 1:
	Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s.
	Use the following settings:
	- Sample speed 1 MS/s or faster.
	- The samples must represent the power of the signal.
	- Measurement duration: For non-adaptive equipment: equal to the observation period defined in
	clauses 4.3.1.3.2 or 4.3.2.4.2. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.
	For adaptive equipment, to increase the measurement accuracy, a higher number of bursts may be used.
	Step 2:
	For conducted measurements on devices with one transmit chain:
	-Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.
	For conducted measurements on devices with multiple transmit chains:
	-Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.
	-Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500ns.
	-For each individual smpling point(time domain), sum the coincident power samples of all ports and store them. Use these summed samples in all following steps.
	Step 3:
	Find the start and stop times of each burst in the stored measurement samples.
	The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples in step 2.
	In case of insufficient dynamic range, the value of 30dB may need to be

	raduand appropriately
	reduced appropriately.
	Step 4:
	Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these P _{burst} values, as well as the start and stop times for each burst.
	$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$
	With "k" being the total number of samples and "n" the actual sample number
	Step 5:
	The highest of all P _{burst} values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.
	Step 6:
	Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
	If applicable, add the additional beamforming gain "Y" in dB.
	If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
	The RF Output Power (P) shall be calculated using the formula below:
	P = A + G + Y
	Step 7:
	This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.
Measurement Record:	Uncertainty: ± 1.5dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data

Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
	Lowest	0.14	0.00	0.14		
Normal	Middle	-0.97	0.00	-0.97		
	Highest	0.05	0.00	0.05		
	Lowest	0.07	0.00	0.07		
NVHT	Middle	-1.07	0.00	-1.07	20	Pass
	Highest	-0.05	0.00	-0.05		
	Lowest	0.12	0.00	0.12		
NVLT	Middle	-0.99	0.00	-0.99		
	Highest	0.03	0.00	0.03		

Remark:

1>. Volt= Voltage, Temp= Temparature

2>. Antenna Gain=0.00dBi

7.2.1 Power Spectral Density

Test Requirement:	ETSI EN 300 328 clause 4.3.2.3		
Test Method:	ETSI EN 300 328 clause 5.4.3.2.1		
Limit:	10dBm/MHz		
Test setup:	Attenuator & DC block DC block EUT Power Supply Spectrum Analyser		
Test procedure:	Step 1:		
	Connect the UUT to the spectrum analyser and use the following settings: Start Frequency: 2400 MHz Stop Frequency: 2483.5 MHz Resolution BW: 10 kHz Video BW: 30 kHz Sweep Points: > 8350 For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented. Detector: RMS Trace Mode: Max Hold Sweep time: 10s; the sweep time may be increased further		
	until a value where the sweep time has no impact on the RMS value of the signal		
	For non-continuous signals, wait for the trace to stabilize. Save the (trace data) set to a file.		
	Step 2:		
	For conducted measurements on smart antenna systems using either operating mode 2 or 3 (see clause 5.3.2.2), repeat the measurement for each of the transmit ports. For each sampling point(frequency domain), add up the coincident power values(in mW) for the different transmit chains and use this as the new data set.		
	Step 3:		
	Add up the values for power for all the samples in the file using the formula below.		
	$P_{Sum} = \sum_{n=1}^{k} P_{sample}(n)$		
	With "k" being the total number of samples and "n" the actual sample		
	Number.		
	Step 4:		
	Normalize the individual values for power(in dBm) so that the sum is equal to the RF output Power (e.i.r.p.) measured in clause 5.4.2 and save the		

	·
	corrected data. The following formulas can be used:
	$C_{Corr} = P_{Sum} - P_{e.i.r.p.}$
	$P_{Samplecorr}(n) = P_{Sample}(n) - C_{Corr}$
	With"n" being the actual sample number
	Step 5:
	Starting from the first sample $P_{samplecorr(n)}$ (lowest frequency), add up the power(in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.
	Step 6:
	Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to #101).
	Step 7:
	Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.
	From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3, shall be recorded in the test report.
Measurement Record:	Uncertainty: ±3dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data

Bluetooth mode					
Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result		
Lowest	-0.03				
Middle	-0.04	10.00	Pass		
Highest	-0.04				

7.2.2 Occupied Channel Bandwidth

Test Requirement:	ETSI EN 300 328 clause	4.3.2.7	
Limit:	The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band 2400MHz ~ 2483.5MHz. In addition, for non-adaptive equipment using wide band modulations other than FHSS and with e.i.r.p. greater than10 dBm, the occupied channel bandwidth shall be less than 20 MHz.		
Test setup:	Attenuator & DC block DC block EUT Power Supply Spectrum Analyser		
Test Precedure:	Step 1:		
	Connect the UUT to t settings:	the spectrum analyser and use the following	
	Centre Frequency:	The centre frequency of the channel under test	
	Resolution BW:	~ 1 % of the span without going below 1 %	
	Video BW:	3 x RBW	
	Frequency Span	2 x Nominal Channel Bandwidth	
	Detector Mode:	RMS	
	Trace mode:	Max Hold	
	Sweep time:	1 s	
	Step 2:		
	Wait for the trace to stab	ilize.	
	Find the peak value of the peak.	the trace and place the analyser marker on this	
	Step 3:		
	Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.		
	Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.		
Test Instruments:	See section 6.0		
Test mode:	Transmitting mode		

Measurement Data:

	Bluetooth mode					
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Result	
Lowest	1.0316	1.10	2401.496	2400MHz ~	Pass	
Highest	1.0313	1.10	2480.528	2483.5MHz	Pass	

7.2.3 Transmitter unwanted emissions in the OOB domain

Test Requirement:	ETSI EN 300 328 claus	ETSI EN 300 328 clause 4.3.2.8		
Test Method:	ETSI EN 300 328 claus	ETSI EN 300 328 clause 5.4.8.2		
Limit:	outside the allocated b mask in figure 1 Within the band specific fulfilled by compliance v	The transmitter unwanted emissions in the out-of-band domain I outside the allocated band, shall not exceed the values provided by mask in figure 1 Within the band specified in table 1, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.1.8.		
	Spurious Domain Out Of Band Dom	ain (OOB) Allocated Band	Out Of Band Domain (OOB) Sp.	urious Domain
	Spullous Bolliani Out Oi Band Bolli	Allocated Ballo	Out Of Ballu Dolliain (OOB)	inous Domain
	A			
	В			
	C			
	2 400 MHz - 2BW 2 400 MHz -	BW 2 400 MHz 2 483,5	MHz 2 483,5 MHz + BW 2 483,5 MHz + 2	BW
	A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p.	BW = Occup	ied Channel Bandwidth in MHz or 1 MHz whiche	ver is greater
	C: Spurious Domain limits			
Test setup:		Attenuator &		
		C block	EUT Power S	Supply
				o app.y
	Spectrum Analyser			
Test procedure:		The applicable mask is defined by the measurement results from the tests performed under clause 5.4.7 (Occupied Channel Bandwidth).		
	mask provided in figure step 6 below. This meth	The Out-of-band emissions within the different horizontal segments of the mask provided in figures 1 and 3 shall be measured using the step 1 to step 6 below. This method assumes the spectrum analyser is equipped with the Time Domain Power option.		
	Step 1:			
	Connect the UUT to the settings:	spectrum analyse	r and use the following	
	Centre Frequency:	2 484 MHz		
	Span:	0Hz		
	Resolution BW:	1 MHz		
	Filter mode:	Channel filter		
	Video BW:	3 MHz		
	Detector Mode:	RMS		
	Trace Mode:	Max Hold		
	Sweep Mode:	Continuous		
	Sweep Points:	Sweep Time [s]	/ (1 µs) or 5 000 whichev	ver is

greater

Trigger Mode: Video trigger

In case video triggering is not possible, an external trigger source

may be used.

Sweep Time: >120 % of the duration of the longest burst

detected during the measurement of the

RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

Adjust the trigger level to select the transmissions with the highest power level.

For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483.5 MHz + BW to 2 483.5 MHz + 2BW)

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

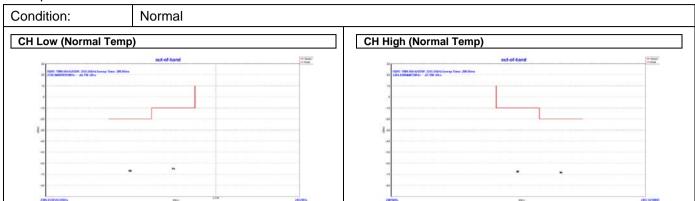
Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

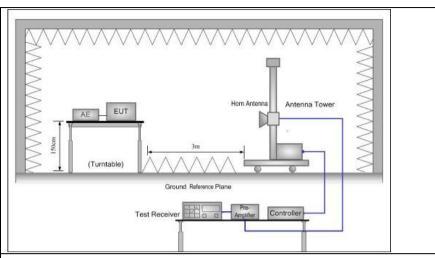
Step 6:


	In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or figure 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
	In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
	Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.
	Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by $10 \times log 10(A_{ch})$ and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.
	NOTE: A _{ch} refers to the number of active transmit chains.
	It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.
Measurement Record:	Uncertainty: ± 1.5dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data:

Test Condition	Test Channel	Antenna	Frequency (MHz)	Level (dBm)	Limit (dBm)
	Lowest	Antenna 1	2397.93	-66.87	-10
Normal	Channel	Antenna 1	2399.00	-65.11	-20
inormai	Highest	Antenna 1	2484.00	-67.41	-10
	Channel	Antenna 1	2485.06	-68.52	-20
	Lowest	Antenna 1	2331.06	-66.75	-10
NVLT	Channel	Antenna 1	2333.89	-65.02	-20
INVLI	Highest	Antenna 1	2416.59	-67.27	-10
	Channel	Antenna 1	2416.54	-68.31	-20
	Lowest	Antenna 1	2332.61	-66.66	-10
NVHT	Channel	Antenna 1	2333.37	-64.89	-20
INVHI	Highest	Antenna 1	2416.61	-67.22	-10
	Channel	Antenna 1	2416.50	-68.34	-20

Test plots at normal condition are followed:



7.2.4 Transmitter unwanted emissions in the spurious domain

Test Requirement:	ETSI EN 300 328 clause 4.3.2.9		
Test Method:	ETSI EN 300 328 clause 5.4.9.2		
Limit:	Frequency Range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
	30 MHz to 47 MHz	-36 dBm	100 kHz
	47 MHz to 74 MHz	-54 dBm	100 kHz
	74 MHz to 87.5 MHz	-36 dBm	100 kHz
	87.5 MHz to 118 MHz	-54 dBm	100 kHz
	118 MHz to 174 MHz	-36 dBm	100 kHz
	174 MHz to 230 MHz	-54 dBm	100 kHz
	230 MHz to 470 MHz	-36 dBm	100 kHz
	470 MHz to 862 MHz	-54 dBm	100 kHz
	862 MHz to 1 GHz	-36 dBm	100 kHz
	1 GHz to 12.75 GHz	-30 dBm	1 MHz
Test Frequency range:	30MHz to 12.75GHz		
Test setup:	Below 1GHz Antenna Tower Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver		
	Above 1GHz		

Test procedure:

1. Pre-scan

The test procedure below shall be used to identify potential unwanted emissions of the UUT.

Step 1:

The sensitivity of the measurement set-up should be such that the noise floor is at least 12 dB below the limits given in table 4 or table 12.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

Resolution BW: 100 kHz Video BW 300 kHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak
Trace Mode: Max Hold
Sweep Points: ≥19 400

For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

Sweep time: For non continuous transmissions (duty cycle

less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT.on

any channel

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different

hopping sequences.

The above sweep time setting may result in long measuring times in case of frequency hopping equipment. To avoid such long measuring times, an FFT analyser could be used.

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause

5.4.9.2.1.3 and compared to the limits given in table 4 or table 12.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz Video BW 3 MHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak
Trace Mode: Max Hold
Sweep Points: ≥ 23 500

For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

Sweep time: For non continuous transmissions (duty cycle

less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.on

any channel

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further

increased to capture multiple transmissions on

the same hopping frequencies

The above sweep time setting may result in long measuring times in case of frequency hopping equipment. To avoid such long measuring times, an FFT analyser could be used.

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.4.9.2.1.3 and compared to the limits given in table 4 or table 12.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.4.9.2.1.3.

Step 4:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (A_{ch}). The limits used to identify emissions during this pre-scan need to be reduced by

 $10 \times \log_{10}(A_{ch})$

2. Measurement of the emissions identified during the pre-scan

The procedure in step 1 to step 4 below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above. This method assumes the spectrum analyser has a Time Domain Power function.

Step 1:

The level of the emissions shall be measured using the following spectrum analyser settings:

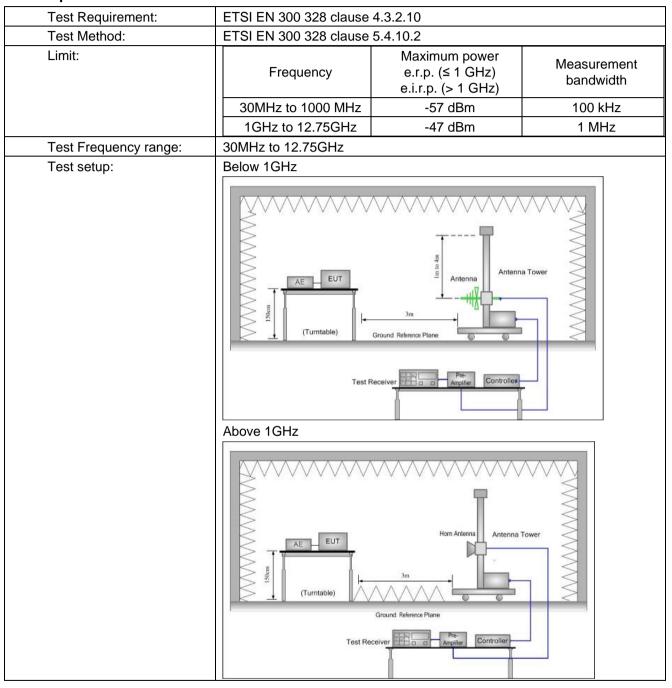
Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	Measurement Mode:	Time Domain Power	
	Centre Frequency:	Frequency of emission identified during the pre-scan	
	Resolution BW:	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)	
	Video BW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)	
	Frequency Span:	Zero Span	
	Sweep mode:	Single Sweep	
	Sweep time:	> 120 % of the duration of the longest burst detected during the measurement of the	
	Sweep points:	RF Output Power Sweep time [µs] / (1 µs) with a maximum of 30 000	
	Trigger:	Video (burst signals) or Manual (continuous signals)	
	Detector:	RMS	
	Step 2:		
	Set a window where the start and stop indicators match the start and end of the burst with the highest level and record the value of the power measured within this window. If the spurious emission to be measured is a continuous transmission, the measurement window shall be set to match the start and stop times of the sweep.		
	Step 3:		
	(equipment with multiple t each of the active transmi		
	active transmit chains.	(within the observed window) for each of the	
	Step 4:	2 shall be compared to the limits defined in	
	table 4 or table 12.	3 shall be compared to the limits defined in	
Measurement Record:		Uncertainty: ± 6dB	
Test Instruments:	See section 6.0		
Test mode:	Transmitting mode		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102


Measurement Data

		The lowest char	nnel			
F	Spurious	Emission	Limit (dDm)	T (D)		
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result		
66.63	Vertical	-68.30	-54.00			
539.53	V	-64.44	-54.00			
4804.00	V	-49.28	-30.00			
7206.00	V	-44.71	-30.00			
9608.00	V	-41.29	-30.00			
12010.00	V	-41.71	-30.00	— Pass		
52.96	Horizontal	-65.56	-36.00			
830.56	Н	-66.74	-54.00			
4804.00	Н	-49.02	-30.00			
7206.00	Н	-45.36	-30.00			
9608.00	Н	-41.21	-30.00			
12010.00	Н	-43.55	-30.00			
		The highest cha	nnel			
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result		
Trequency (Miriz)	polarization	Level(dBm)	Lillit (dbill)	rest Nesuit		
52.88	Vertical	-67.17	-54.00			
683.84	V	-69.35	-54.00			
4960.00	V	-51.75	-30.00			
7440.00	V	-46.31	-30.00			
9920.00	V	-42.50	-30.00			
12400.00	V	-41.73	-30.00	Pass		
55.00	Horizontal	-68.68	-54.00			
851.28	Н	-69.82	-54.00			
4960.00	Н	-51.52	-30.00			
7440.00	Н	-46.96	-30.00			
9920.00	Н	-42.68	-30.00			
12400.00	Н	-44.75	-30.00			

7.3 Receiver Requirement

7.3.1 Spurious Emissions

Test procedure:

1. Pre-scan

The procedure in step 1 to step 4 below shall be used to identify potential unwanted emissions of the UUT.

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 5 or table13.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

Resolution BW: 100 kHz Video BW 300 kHz

Filter type: 3dB (Gaussian)

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: ≥ 19 400

Sweep time: Auto

Wait for the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.4.10.2.1.3 and compared to the limits given in table 5 or table 13.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz Video BW 3 MHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak
Trace Mode: Max Hold

Sweep Points: ≥ 23500; for spectrum analysers not

supporting this high number of sweep

points, the frequency band may be segmented

Sweep time: Auto

Wait for the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below, the applicable limit or above, shall be individually measured using the procedure in clause 5.4.10.2.1.3 and compared to the limits given in table 5 or table 13.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.4.10.2.1.3.

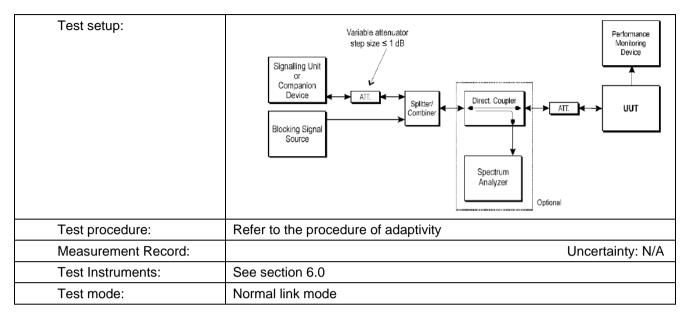
Step 4

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (A_{ch}). The limits used to identifyemissions during this pre-scan need to be reduced with

 $10 \times \log_{10}(A_{ch})$

	T				
	2. Measurement of the emissions identified during the pre-scan The procedure in step 1 to step 4 below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above. This method assumes the spectrum analyser has a Time Domain Power function.				
	Step 1:				
	The level of the emissions shall be measured using the following				
	spectrum analyser settings Measurement Mode:	Time Domain Power			
		Frequency of the emission identified during the			
	Centre Frequency:	pre-scan			
	Resolution Bandwidth:	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)			
	Video Bandwidth:	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)			
	Frequency Span:	Zero Span			
	Sweep mode:	Single Sweep			
	Sweep time:	30 ms			
	Sweep points:	≥ 30 000			
	Trigger:	Video (for burst signals) or Manual (for continuous signals			
	Detector:	RMS			
	Step 2:				
	Set a window where the start and stop indicators match the start and end of the burst with the highest level and record, the value of the power measured within this window. If the spurious emission to be measured is a continuous, transmission, the measurement window shall be set to the start and stop times of the sweep. Step 3: In case of conducted measurements on smart antenna systems (equipment with multiple receive chains), step 2 needs to be repeated for each of the active receive chains A _{ch} . Sum the measured power (within the observed window) for each of the active receive chains. Step 4: The value defined in step 3 shall be compared to the limits defined in				
Measurement Record:	table 5 and table 13.	Uncertainty: ± 6dB			
Test mode:	Kept Rx in receiving mode	•			
Test Instruments:	See section 6.0				

Measurement Data:

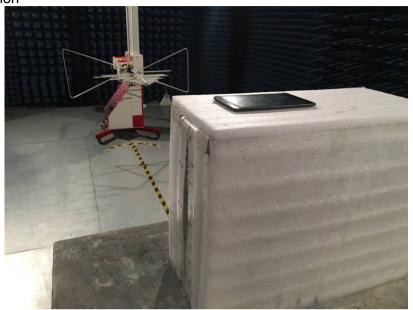

		Bluetooth mo	de		
		The lowest cha	nnel		
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result	
rrequericy (MHZ)	polarization	Level(dBm)	Lilliit (dBill)	rest Result	
81.62	Vertical	-70.46			
480.22	V	-69.69			
4804.00	V	-61.53			
7206.00	V	-57.52	2nW/ -57dBm		
9608.00	V	-52.47	below 1GHz,		
12400.00	V	-53.59		Pass	
72.44	Horizontal	-70.62	20nW/ -47dBm	Pass	
788.84	Н	-69.61	above 1GHz.		
4804.00	Н	-64.42			
7206.00	Н	-58.55			
9608.00	Н	-54.03			
12010.00	Н	-55.53			
		The highest cha	nnel		
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result	
	polarization	Level(dBm)		rest Result	
65.89	Vertical	-72.98			
753.39	V	-70.71			
4960.00	V	-64.68			
7440.00	V	-59.09	2nW/ -57dBm		
9920.00	V	-53.88	below 1GHz,		
12400.00	V	-53.80		Pass	
74.25	Horizontal	-75.70	20nW/ -47dBm	ra55	
552.15	Н	-72.92	above 1GHz.		
4960.00	Н	-66.30			
7440.00	Н	-58.89			
9920.00	Н	-54.68			
12400.00	Н	-56.08			

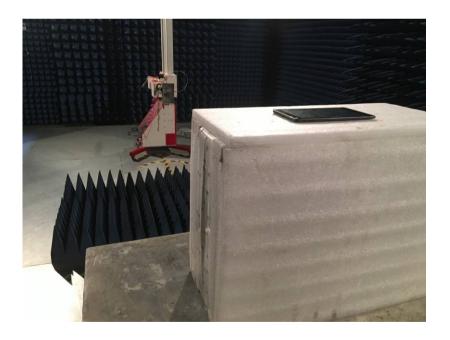
7.3.2 Receiver Blocking

Test Requirement:	ETSI EN 300 328 clause	ETSI EN 300 328 clause 4.3.1.12				
Test Method:	ETSI EN 300 328 clause 5.4.11.2.					
imit:	While maintaining the mi 4.3.1.12.3, the blocking le equal to or greater than t category provided in tabl Table 6: Receiver Bloc	evels at specified he limits defined e 6, table 7 or tab	frequency of for the applicable 8.	fsets shall be able receiver		
	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blockin signal		
	P _{min} + 6 dB	2 380 2 503,5	-53	CW		
	P _{min} + 6 dB	2 300 2 330 2 360	-47	CW		
	P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW		
	antenna assemble Table 7: Receiver Blo	cking parameters r	eceiver categor	y 2 equipment		
	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal		
	P _{min} + 6 dB	2 380 2 503,5	-57	CW		
	P _{min} + 6 dB	2 300 2 583,5	-47	CW		
	any blocking signa NOTE 2: The levels specifie	nce criteria as defined I. d are levels in front of t ements, the levels have gain.	in clause 4.3.1.12 the UUT antenna. e to be corrected b	.3 in the absence o In case of by the actual		
	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blockin signal		
	P _{min} + 12 dB	2 380 2 503,5	-57	CW		
	P _{min} + 12 dB	2 300 2 583,5	-47	CW		
	any blocking sigr NOTE 2: The levels specif	nance criteria as define al. ed are levels in front of urements, the levels ha	d in clause 4.3.1.1 fthe UUT antenna	2.3 in the absence . In case of		

Measurement Data:

Test Channel	P _{min} (dBm)	PER(%)	Limit of PER(%)	Wanted signal mean power companion (P _{min} +12dB)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	Type of blocking signal	Result	
Lowest	-82 10	-82.10 9.05	05	-70.10	2300.00	-47	CW	Pass	
Channel			9.05	-70.10	2380.00	-57			
Highest channel -85.15	0E 1E	-85.15 9.23	10	-73.15	2503.50	-57	CVV	Pa55	
	-00.10	-00.10	9.23	9.23		-73.15	2583.50	-47	


Note: During the blocking test. The value of PER was no changed. Maybe the value of PER has a slight floating, but no bigger than 10%.


No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

8 Test setup photo

Radiated Emission

9 EUT Constructional Details

Reference to the test report No.: GTS201709000150E01

-----End-----