

RADIO TEST REPORT

Report No: STS1609183W02

Issued for

Digicom Trading (PVT) Limited

Room No.302, 3rd floor, the forum, Clifton, Karachi, Pakistan

Product Name:	Mobile Phone
Brand Name:	QMobile
Test Model Name:	E500i Music
Series Model:	N/A
Test Standard:	ETSI EN 300 328 V1.9.1 (2015-02)

Any reproduction of this document must be done in full. No single part of this document may be reproduced permission from STS, All Test Data Presented in this report is only applicable to presented to presented applicable to presented applicable

Page 2 of 51

TEST REPORT CERTIFICATION

Applicant's name:	Digicom Trading (PVT) Limited		
Address:	Room No.302, 3rd floor, the forum, Clifton, Karachi, Pakistan		
Manufacture's Name:	HK YBHS ELECTROIC DIGITAL TECHNOLOGY CO., LIMITED		
Address:	2th Floor, Block C, Academy Of Aerospace Technology Building, Keji South 10th Rd, Hi-tech Park, Nanshan District, Shenzhen, China		
Product description			
Product name:	Mobile Phone		
Trademark:	QMobile		
Model and/or type reference :	E500i Music		
Series Model:	N/A		
Standards	ETSI EN 300 328 V1.9.1 (2015-02)		

This device described above has been tested by STS, and the test results show that the equipment under test (EUT) is in compliance with the 1999/5/EC R&TTE Directive Art.3.2 requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests:	23 Sep. 2016 ~ 29 Sep. 2016
Date of Issue	30 Sep. 2016
Test Result:	Pass

Testing Engineer :	Junter	
	(Tony Liu)	ESTING . CONSUL
Technical Manager :	Mati	APPROVAL 8
	(Vita Li)	Files would
Authorized Signatory :	Thomas Junes	
	(Bovey Yang)	

Shenzhen STS Test Services Co., Ltd.

Page 3 of 51

TABLE OF CONTENTS

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 TEST CONDITIONS AND CHANNEL	13
2.3 DESCRIPTION OF TEST CONDITIONS	13
2.4 DESCRIPTION OF SUPPORT UNITS	14
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	15
3. RF OUTPUT POWER	16
3.1 APPLIED PROCEDURES / LIMIT	16
3.2 TEST PROCEDURES	16
3.3 TEST SETUP LAYOUT	16
3.4 TEST RESULT	17
4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION & HO	PPING SEQUENCE
	20
4.1 APPLIED PROCEDURES / LIMIT	20
4.2 TEST PROCEDURE	22
4.3 TEST SETUP	22
4.4 TEST RESULT	23
5. HOPPING FREQUENCY SEPARATION	27
5.1 APPLIED PROCEDURES / LIMIT	27
5.2 TEST PROCEDURE	27
5.3 TEST SETUP	27
5.4 TEST RESULT	28
6. OCCUPIED CHANNEL BANDWIDTH	29
6.1 APPLIED PROCEDURES / LIMIT	29
6.2 TEST PROCEDURES	29
6.3 TEST SETUP LAYOUT	29
6.4 TEST RESULT	30
7. TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN	34
7.1 APPLIED PROCEDURES / LIMIT	34

7.2 MEASURING INSTRUMENTS AND SETTING 34

Page 4 of 51

TABLE OF CONTENTS

7.3 TEST SETUP LAYOUT	34
7.4 TEST RESULT	35
8. SPURIOUS EMISSIONS – TRANSMITTER	39
8.1 APPLIED PROCEDURES / LIMIT	39
8.2 MEASURING INSTRUMENTS AND SETTING	39
8.3 TEST PROCEDURES	40
8.4 TEST SETUP LAYOUT	40
8.5 EUT OPERATION DURING TEST	41
8.6 TEST RESULT (30MHz ~ 12750MHz)	42
9. SPURIOUS EMISSIONS – RECEIVER	44
9.1 APPLIED PROCEDURES / LIMIT	44
9.2 MEASURING INSTRUMENTS AND SETTING	44
9.3 TEST PROCEDURES	44
9.4 EUT OPERATION DURING TEST	45
9.5 TEST SETUP LAYOUT	45
9.6 TEST RESULT (30MHz ~ 12750MHz)	46
10. RECEIVER BLOCKING	47
10.1 APPLIED PROCEDURES / LIMIT	47
10.2 TEST PROCEDURES	47
10.3 TEST SETUP LAYOUT	48
10.4 TEST RESULT	48
11. ADAPTIVE (CHANNEL ACCESS MECHANISM)	49
11.1 APPLIED PROCEDURES / LIMIT	49
11.2 TEST PROCEDURES	49
11.3 TEST SETUP LAYOUT	50
11.4 TEST RESULTS	50

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 5 of 51

Report No.: STS1609183W02

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	30 Sep. 2016	STS1609183W02	ALL	Initial Issue
Note: Format version of the report -V01				

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

ETSI EN 300 328 V1.9.1			
Test Item	Limit	Frequency Range (MHz)	Applicable (Yes/No)
TRANSI	MITTER PARAMETERS		
RF output power	Clause 4.3.1.2.3		Y
Duty Cycle, Tx-sequence, Tx-gap	Clause 4.3.1.3.3		Ν
Accumulated Transmit time, Frequency Occupation & Hopping Sequence	Clause 4.3.1.4.3		Ν
Hopping Frequency Separation	Clause 4.3.1.5.3		Y
Medium Utilisation	Clause 4.3.1.6.3	2400-2483.5	Ν
Adaptivity(Adaptive Frequency Hopping)	Clause 4.3.1.7		Y
Occupied Channel Bandwidth	Clause 4.3.1.8.3		Y
Transmitter unwanted emissions in the OOB domain	Clause 4.3.1.9.3		Y
Transmitter unwanted emissions in the spurious domain	Clause 4.3.1.10.3		Y
RECEIVER PARAMETERS			
Spurious emissions (conducted)		20.40750	Ν
Spurious emissions (radiated)	Clause 4.3.1.11.3	30-12750	Y
Receiver Blocking	Clause 4.3.1.12.3	2400-2483.5	Y
Geo-location capability	Clause 4.3.1.13.3		Ν

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 7 of 51

1.1 TEST FACTORY

Company Name:	Shenzhen STS Test Services Co., Ltd.
Address:	1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	+86-755 3688 6288
Fax:	+86-755 3688 6277
Registration No.:	CNAS Registration No.: L7649; FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** % $^{\circ}$

No.	Item	Uncertainty
1	RF power, conducted	±0.70dB
2	Spurious emissions, conducted	±1.19dB
3	Spurious emissions, radiated(>1G) ±2.83dB	
4	Spurious emissions, radiated(<1G) ±3.01dB	
5 Temperature ±0.5°C		±0.5°C
6	Humidity	±2%

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone		
Brand Name	QMobile		
Model Name	E500i Music		
Series Model	N/A		
Model Difference	N/A		
Product Description	The EUT is Mobile Phone Operation Frequency: 2402~2480 MHz BT(1Mbps): GFSK Modulation Type: BT EDR(2Mbps): π/4-DQPSK BT EDR(3Mbps): 8DPSK Number Of Channel: 79CH Antenna Designation: Dipole Dipole Antenna Antenna Gain(Peak): 1 dBi Power Rating: DC 3.7V by battery Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.		
Channel List	Refer to below		
Adapter	Power supply and ADP(rating): Input: AC 100-240V, 150mA, 50/60Hz Output: DC5.0V, 500mA		
Battery	Battery(rating): Rated Voltage: 3.7V Charge Limit: 4.2V Capacity: 1000mAh		
Hardware version number	K38-MB-V1.1		
Software version number	QMobile_E500i Music_20160920_V1.08		

Note: For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency (MHz)
00	2402
01	2403
02	2404
39	2441
40	2442
41	2443
77	2479
78	2480

- a) The type of modulation used by the equipment:
 - ■FHSS

other forms of modulation

- b) In case of FHSS modulation:
 - •In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies:
 - •In case of Adaptive Frequency Hopping Equipment:
 - The maximum number of Hopping Frequencies: 79
 - The minimum number of Hopping Frequencies: 79
 - The Dwell Time:
 - The Minimum Channel Occupation Time:
- c) Adaptive / non-adaptive equipment:

□non-adaptive Equipment

■adaptive Equipment without the possibility to switch to a non-adaptive mode □adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The Channel Occupancy Time implemented by the equipment:

The equipment has implemented an LBT based DAA mechanism

•□ In case of equipment using modulation different from FHSS:

The equipment is Frame Based equipment

□The equipment is Load Based equipment

■The equipment can switch dynamically between Frame Based and Load Based equipment The CCA time implemented by the equipment: µs

The value q as referred to in clause 4.3.2.5.2.2.2

The equipment has implemented an non-LBT based DAA mechanism

The equipment can operate in more than one adaptive mode

- e) In case of non-adaptive Equipment:
 - The maximum RF Output Power (e.i.r.p.): 3.46 dBm

The maximum (corresponding) Duty Cycle: 45%

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared):

- f) The worst case operational mode for each of the following tests:
 - RF Output Power GFSK
 - Accumulated Transmit time, Frequency Occupation & Hopping Sequence (only for FHSS equipment)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

GFSK

- Hopping Frequency Separation (only for FHSSequipment) GFSK
- Occupied Channel Bandwidth GFSK
- Transmitter unwanted emissions in the OOB domain GFSK
- □ Transmitter unwanted emissions in the spurious domain GFSK
- Receiver spurious emissions GFSK
- g) The different transmit operating modes (tick all that apply):
 - Operating mode 1: Single Antenna Equipment
 - Equipment with only 1 antenna
 - Equipment with 2 diversity antennas but only 1 antenna active at any moment in time
 - □Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1 antenna is used. (BT mode in smart antenna systems)
 - Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 Single spatial stream / Standard throughput / (BT mode)
 - □High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
 - High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2 NOTE: Add more lines if more channel bandwidths are supported.
 - Operating mode 3: Smart Antenna Systems Multiple Antennas with beam forming
 Single spatial stream / Standard throughput (BT mode)
 - □High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
 - □High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2 NOTE: Add more lines if more channel bandwidths are supported.
- h) In case of Smart Antenna Systems:
- The number of Receive chains:
- The number of Transmit chains:
 symmetrical power distribution
 asymmetrical power distribution
 In case of beam forming, the maximum beam forming gain:
 NOTE: Beam forming gain does not include the basic gain of a single antenna.
- i) Operating Frequency Range(s) of the equipment:
- Operating Frequency Range 1: 2402 MHz to 2480 MHz
- Operating Frequency Range 2: NOTE: Add more lines if more Frequency Ranges are supported.
- j) Occupied Channel Bandwidth(s):
 - Occupied Channel Bandwidth : 0.866 MHz
 - Occupied Channel Bandwidth : 1.090 MHz
 - NOTE: Add more lines if more channel bandwidths are supported.

k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.):

- ■Stand-alone
- Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)
- □Plug-in radio device (Equipment intended for a variety of host systems)
- Other

Page 11 of 51

Report No.: STS1609183W02

I) The extreme operating conditions that apply to the equipment:
 Operating temperature range: -10°C to 40°C
 Operating voltage range: 3.3V to 4.2V ■DC
 □Details provided are for the:

■stand-alone equipment

 $\hfill\square$ combined (or host) equipment

□test jig

- m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels:
- Antenna Type

Integral Antenna

Antenna Gain: 1 dBi

If applicable, additional beamforming gain (excluding basic antenna gain): dB □Temporary RF connector provided

□No temporary RF connector provided

Dedicated Antennas (equipment with antenna connector)

□Single power level with corresponding antenna(s)

□Multiple power settings and corresponding antenna(s)

Number of different Power Levels: Power Level 1: dBm

Power Level 2: dBm

Power Level 3: dBm

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

• For each of the Power Levels, provide the intended antenna assemblies, their, corresponding gains (G) and the resulting e.i.r.p. levels also taking into

account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1	1	3.46	E500i Music
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 2: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1			
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

Power Level 3: dBm

Number of antenna assemblies provided for this power level:

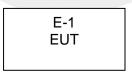
Assembly #	Gain (dBi)	e.i.r.p.(dBm)	Part number or model name
1			
2			
3		7	
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

- n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices:
 Details provided are for the: stand-alone equipment
 combined (or host) equipment
 combined (or host) equipment
 test jig Supply Voltage
 AC mains State AC voltage 100-240 V
 DC State DC voltage :3.7V
 In case of DC, indicate the type of power source
 Internal Power Supply
 External Power Supply or AC/DC adapter
 Battery: 3.7V
 Other:
- o) Describe the test modes available which can facilitate testing: The EUT can entering Engineering Command by enter * #435763#
- p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.): BT

2.2 TEST CONDITIONS AND CHANNEL

	Normal Test Conditions	Extreme Test Conditions
Temperature 15°C - 35°C		-10°C – 40°C
Relative Humidity	20% - 75%	20% - 75%
Supply Voltage	DC 3.7V	DC 3.3V – DC 4.2V


Test Channel	EUT Channel	Test Frequency (MHz)
lowest	CH00	2402
middle	CH39	2441
highest	CH78	2480

Note:

- (1) The HT 40°C and LT -10°C was declare by manufacturer, The EUT couldn't be operate normally with higher or lower temperature.
- (2) The High Voltage 4.2V and Low Voltage 3.3V was declare by manufacturer, The EUT couldn't be operate normally with higher or lower voltage.

2.3 DESCRIPTION OF TEST CONDITIONS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

The EUT was programmed to be in continuously transmitting mode.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-1	Mobile Phone	QMobile	E500i Music	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
N/A	N/A	N/A	N/A	N/A
				N

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^r Length ^a column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

Page 15 of 51

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

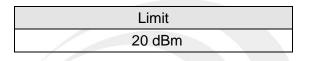
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2015.10.25	2016.10.24
Bilog Antenna	TESEQ	CBL6111D	34678	2015.11.25	2016.11.24
Horn Antenna	Schwarzbeck	BBHA 9120D(1201)	9120D-1343	2016.03.06	2017.03.05
USB RF power sensor	DARE	RPR3006W	15I00041SNO0 3	2015.10.25	2016.10.24
USB RF power sensor	DARE	RPR3006W	15I00041SNO0 4	2015.10.25	2016.10.24
PreAmplifier	Agilent	8449B	60538	2015.10.25	2016.10.24
Temperature& Humidity test chamber	GZGONGWEN	GDS-250	080821	2015.10.27	2016.10.26
Signal Generator	Agilent	N5182A	MY46240556	2015.11.18	2016.11.17
Signal Analyzer	Agilent	N9020A	MY49100060	2015.11.18	2016.11.17
Universal Radio communication tester	R&S	CMU200	112012	2015.10.25	2016.10.24
Attenuator	HP	8494B	DC-18G	2015.10.25	2016.10.24
DC Power source	Zhaoxin	RXN-605D	20140807176	N.C.R	N.C.R
AC Power Source	APC	KDF-11010G	F214050035	N.C.R	N.C.R
Router	TP-LINK	TL-WR885N	112507401073 5	N.C.R	N.C.R

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

3. RF OUTPUT POWER

3.1 APPLIED PROCEDURES / LIMIT


FHSS:

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the supplier. See clause 5.3.1 m). The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm. This limit shall apply for any combination of power level and intended antenna assembly.

Other than FHSS:

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm. The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

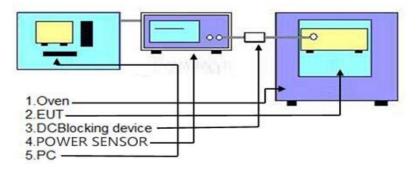
This limit shall apply for any combination of power level and intended antenna assembly.

Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these P_{burst} values, as well as the start and stop times for each burst.

$$P_{burst} = \frac{1}{k} \sum_{n=1}^{k} P_{sample}(n)$$

with 'k' being the total number of samples and 'n' the actual sample number

3.2 TEST PROCEDURES

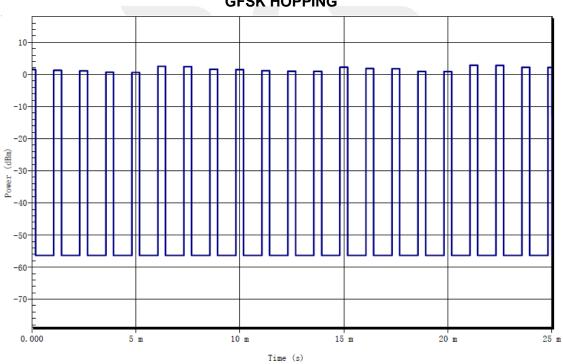

- 1. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.2.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.2.2.1 for the measurement method.

Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s.

Use the following settings:

- a) Sample speed 1 MS/s or faster.
 - The samples must represent the power of the signal.
 - Measurement duration: For non-adaptive equipment: equal to the observation period defined in b)
- b) clauses 4.3.1.2.1 or 4.3.2.3.1. For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.
- c) Print the plots from power sensor by used power sensor on PC, select the max result and record it.

3.3 TEST SETUP LAYOUT



Shenzhen STS Test Services Co., Ltd.

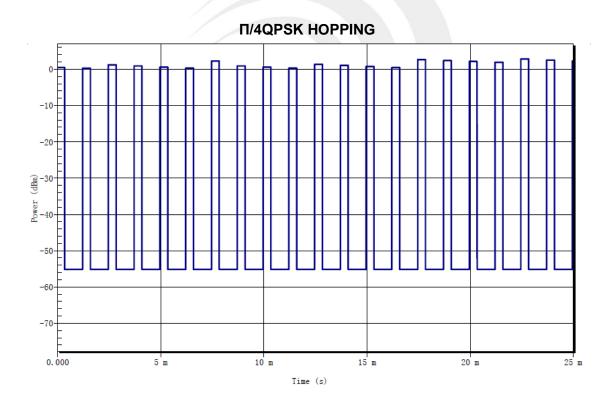
3.4 TEST RESULT

Modulation		GFSK				
Test conditions		Normal		E	xtreme	
	Test conditions		LTLV	LTHV	HTLV	HTHV
	Hopping		3.38	3.46	3.36	3.39
EIRP (dBm) Max. output power		3.46				
Lir	nits	20dBm (-10dBW)				
Burs	st plot	> 10				
T/on		0.25ms				
T/Off		1ms				
Re	sult			Complie	es	

=

GFSK HOPPING

Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

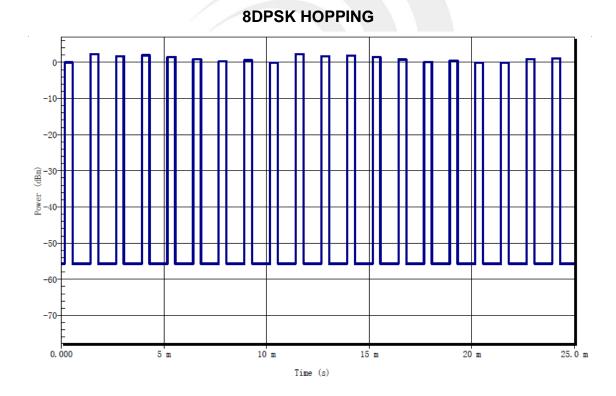
Page 18 of 51

Report No.: STS1609183W02

Modulation		π/4-DQPSK					
Test conditions		Normal		Ex	treme		
		Normai	LTLV	LTHV	HTLV	HTHV	
	Hopping	2.90	2.86	2.93	2.87	2.91	
	EIRP (dBm) Max. output power		2.93				
	Limit	≤100mW (20dBm)					
Βι	ırst plot	> 10					
T/on		0.25ms					
T/Off		1ms					
F	Result			Complie	es		

=

Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Page 19 of 51

Report No.: STS1609183W02

Modulation		8-DPSK				
Test conditions		Normal		Ex	treme	
		Normal	LTLV	LTHV	HTLV	HTHV
	Hopping	2.70	2.68	2.75	2.66	2.69
EIRP (dBm)	Max. output power		2.75			
	Limit	≤100mW (20dBm)				
Bu	ırst plot	> 10				
T/on		0.25ms				
T/Off		1ms				
R	lesult			Complie	es	

=

Shenzhen STS Test Services Co., Ltd.

4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION & HOPPING SEQUENCE

4.1 APPLIED PROCEDURES / LIMIT

Non-adaptive frequency hopping systems

The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

Non-adaptive medical devices requiring reverse compatibility with other medical devices placed on the market that are compliant with version 1.7.1 or earlier versions of ETSI EN 300 328, are allowed to have an operating mode in which the maximum Accumulated Transmit Time is 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used, only when communicating to these legacy devices

already placed on the market. In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

- Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.
- Option 2: The occupation probability for each frequency shall be between ((1 / U) × 25 %) and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

Adaptive frequency hopping equipment

Adaptive Frequency Hopping equipment shall be capable of operating over a minimum of 70 % of the band specified in clause 1.

The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used. In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

- Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.
- Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

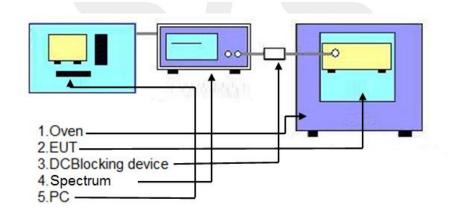
1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 21 of 51

Other Requirements

For non-Adaptive Frequency Hopping equipment, from the N hopping frequencies defined in clause 4.3.1.4.3.1 above, the equipment shall transmit on at least one hopping frequency while other hopping frequencies are blacklisted. For equipment that blacklists one or more hopping frequencies, these blacklisted frequencies are considered as active transmitting for the calculation of the MU factor of the equipment. See also clause 5.3.2.2.1.3 step 3, second bullet item and clause 5.3.2.2.1.4 step 3, note 2.For Adaptive Frequency Hopping equipment, from the N hopping frequencies defined in clause 4.3.1.4.3.2 above, the equipment shall consider at least one hopping frequency for its transmissions. Providing that there is no interference present on this frequency with a level above the detection threshold defined in clause 4.3.1.7.2.2 point 5 or clause 4.3.1.7.3.2 point 5, then the equipment shall have transmissions on this frequency. For non-Adaptive Frequency Hopping equipment, when not transmitting on a hopping frequency, the equipment has to occupy that frequency for the duration of the typical dwell time (see also definition for blacklisted frequency in clause 3.1).

For Adaptive Frequency Hopping equipment using LBT based DAA, if a signal is detected during the CCA, the equipment may jump immediately to the next frequency in the hopping sequence (see clause 4.3.1.7.2.2 point 2)

provided the limit for maximum dwell is respected.



4.2 TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.4.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.4.2 for the measurement method.
- a) Set EUT work in hopping mode;
- b) Centre Frequency: Equal to the hopping frequency being investigated
- c) Frequency Span: 0 Hz
- d) RBW: ~ 50 % of the Occupied Channel Bandwidth (433K for 1M, 545K for 3M)
- e) VBW: ≥ RBW (433KHz for 1M, 545KHz for 3M)
- f) Detector Mode: RMS
- g) Sweep time: Equal to the applicable observation period (see clause 4.3.1.3.2)
- h) Number of sweep points: 30000
- j) Trace mode: Clear / Write
- k) Trigger: Free Run

4.3 TEST SETUP

4.4 TEST RESULT

GFSK

Dwell Time: N/A for Modulation Technology other than FHSS

Data Daakat	Fraguanay	Pulse Duration	Dwell Time	Limits
Data Packet	Frequency	(ms)	(s)	(ms)
DH1	2441	0.370	0.118	400
DH3	2441	1.630	0.262	400
DH5	2441	2.880	0.307	400

Minimum Frequency Occupation Time Result:

N/A for Modulation Technology other than FHSS

Mode	Channel	Minimum Frequency occupation Time(ms)
DH1	2441	348.12
DH3	2441	1199.00
DH5	2441	2388.37

Note: Sweep time: 4 × Dwell Time × Actual number of hopping frequencies in use

Hopping sequence: N/A for Modulation Technology other than FHSS

20dB BW(MHz)	Limit	
79.55	Limit	
Hopping Sequence(%)	70.0/	
95.27%	>70 %	

Remark:

1. For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope, it shall be verified whether the system uses 70 % of the band specified.

2. Hopping Sequence(%) = (20dB BW/83.5)*100

8DPSK

Dwell Time: N/A for Modulation Technology other than FHSS

Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
Data Facket	Frequency	(ms)	(S)	(ms)
3DH1	2441	0.380	0.122	400
3DH3	2441	1.630	0.262	400
3DH5	2441	2.890	0.307	400

Minimum Frequency Occupation Time Result:

N/A for Modulation Technology other than FHSS

Mode	Channel	Minimum Frequency occupation Time(ms)
3DH1	2441	346.67
3DH3	2441	1198.28
3DH5	2441	2388.73

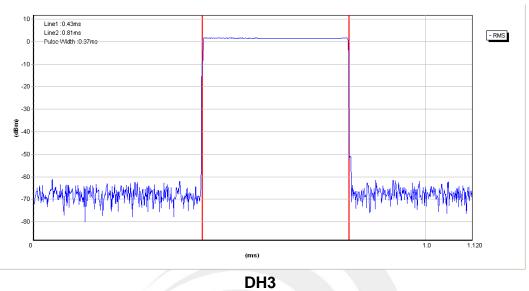
Note: Sweep time: 4 × Dwell Time × Actual number of hopping frequencies in use

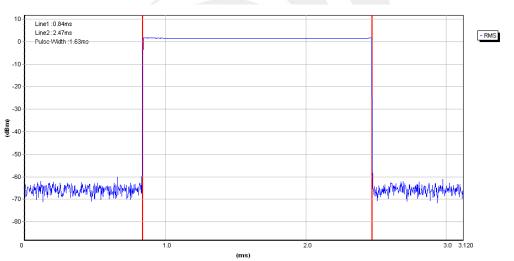
Hopping sequence: N/A for Modulation Technology other than FHSS

20dB BW(MHz) 79.88	Limit
Hopping Sequence(%) 95.66%	>70%

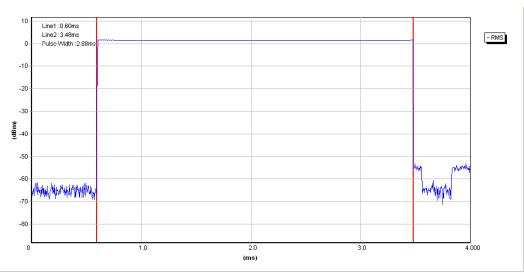
Remark:

1. For adaptive systems, using the lowest and highest -20 dB points from the total spectrum envelope, it shall be verified whether the system uses 70% of the band specified.


2. Hopping Sequence(%) = (20dB BW/83.5)*100

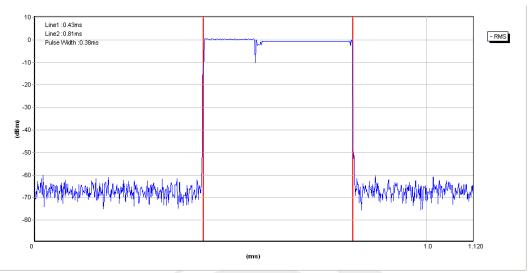


Test Plot

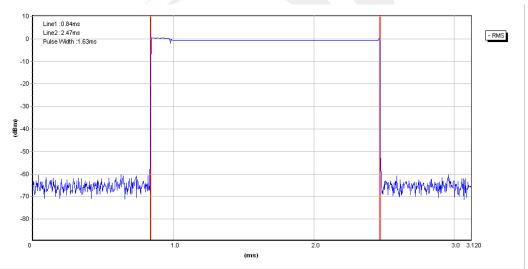

GFSK

DH1

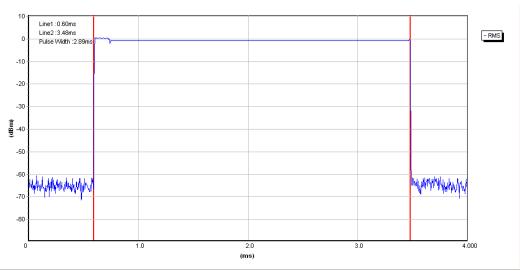
DH5



Shenzhen STS Test Services Co., Ltd.



Test Plot


8DPSK 3DH1

3DH5

Shenzhen STS Test Services Co., Ltd.

5. HOPPING FREQUENCY SEPARATION

5.1 APPLIED PROCEDURES / LIMIT

Non-adaptive frequency hopping systems

For non-adaptive Frequency Hopping equipment, the Hopping Frequency Separation shall be equal or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz.

a. Separation of 100 kHz. For equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive Frequency Hopping equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. only the minimum Hopping Frequency Separation of 100 kHz applies.

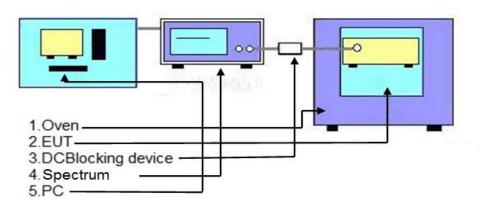
Adaptive frequency hopping systems

For adaptive Frequency Hopping equipment, the minimum Hopping Frequency Separation shall be 100 kHz.

Adaptive Frequency Hopping equipment, which for one or more hopping frequencies, has switched to a non-adaptive mode because interference was detected on all these hopping positions with a level above the threshold level defined in clause 4.3.1.7.2.2 or clause 4.3.1.7.3.2, is allowed to continue to operate with a minimum Hopping Frequency Separation

 of 100 kHz on these hopping frequencies as long as the interference is present on these frequencies. The equipment shall continue to operate in an adaptive mode on other hopping frequencies.

Adaptive Frequency Hopping equipment which decided to operate in a non-adaptive mode on one or more hopping


frequencies without the presence of interference, shall comply with the limit in clause 4.3.1.5.3.1 for these hopping

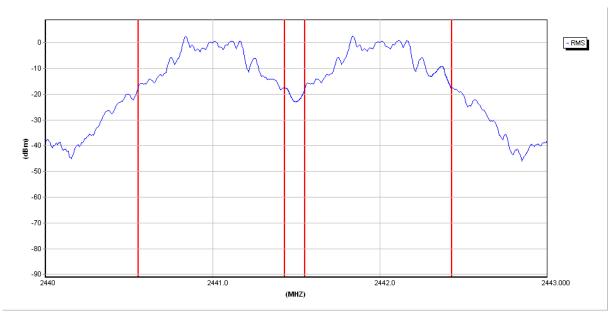
frequencies as well as with all other requirements applicable to non-adaptive frequency hopping equipment.

5.2 TEST PROCEDURE

- a. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.5 for the test conditions.
- b. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.5.2 for the measurement method.
 - Centre Frequency: Centre of the two adjacent hopping frequencies
 - Frequency Span: Sufficient to see the complete power envelope of both hopping frequencies
 - RBW: 1 % of the Span
 - RBW: 30K
 - VBW:100K
 - Detector Mode: RMS
 - Trace Mode: Max Hold
 - Sweep time: 1S

5.3 TEST SETUP

5.4 TEST RESULT


 GFSK				
Frequency	Ch. Separation	Limit	Decult	
Frequency	(MHz)	(kHz)	Result	
2402.000MHz	1.01	>100	Complies	
2441.000MHz	1.01	>100	Complies	
2480.000 MHz	1.01	>100	Complies	

π/4-QPSK

Frequency	Ch. Separation (MHz)	Limit (kHz)	Result
2402.000MHz	1.01	>100	Complies
2441.000MHz	1.00	>100	Complies
2480.000 MHz	1.02	>100	Complies

8DPSK				
Frequency	Ch. Separation	Limit	Result	
Frequency	(MHz)	(kHz)	Result	
2402.000MHz	1.03	>100	Complies	
2441.000MHz	1.03	>100	Complies	
2480.000 MHz	1.01	>100	Complies	

Shenzhen STS Test Services Co., Ltd.

6. OCCUPIED CHANNEL BANDWIDTH

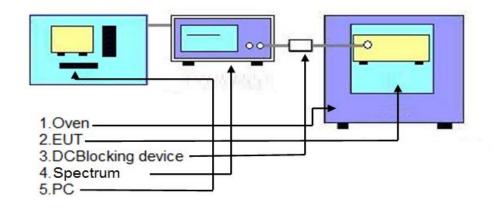
6.1 APPLIED PROCEDURES / LIMIT

The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band given in clause 1.

For non-adaptive Frequency Hopping equipment with e.i.r.p greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the Nominal Channel Bandwidth declared by the supplier. See clause 5.3.1 j). This declared value shall not be greater than 5 MHz.

6.2 TEST PROCEDURES

- ^{1.} Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.8 for the test conditions.
- ^{2.} Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.8.1 for the measurement method.
 - -- Centre Frequency: The centre frequency of the channel under test
 - -- Resolution BW: ~ 1 % of the span without going below 1 %
 - --RBW: 30K


VBW: 100K

--Frequency Span for frequency hopping equipment: Lowest frequency separation that is used within the hopping sequence)

--Frequency Span for other types of equipment: 2 × Nominal Channel Bandwidth (e.g. 2 MHz for a 1 MHz channel)

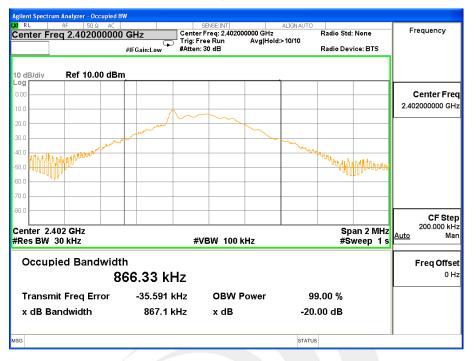
- -- Detector Mode: RMS
- --Trace Mode: Max Hold
- --Sweep time:1S

6.3 TEST SETUP LAYOUT

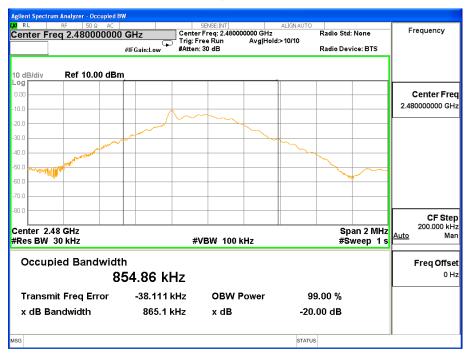
6.4 TEST RESULT

OCCUPIED CHANNEL BANDWIDTH					
Test mode	СН	Frequency	Bandwidth	Limit	
Test mode	MHz MHz	MHz	MHz		
GFSK	CH00	2402	0.866		
GFSK	CH78	2480	0.855		
П/4QPSK	CH00	2402	1.163	>2400.0	
	CH78	2480	1.163	<2483.5	
8DPSK	CH00	2402	1.090		
ODPSK	CH78	2480	1.089		
Test Result	PASS				

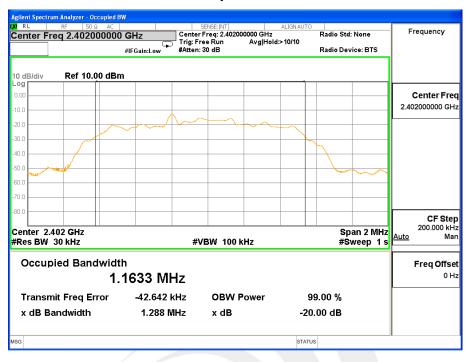
Note: FL is the lowest frequency of the 99% occupied bandwidth of power envelope. FL is the lowest frequency of the 99% occupied bandwidth of power envelope.



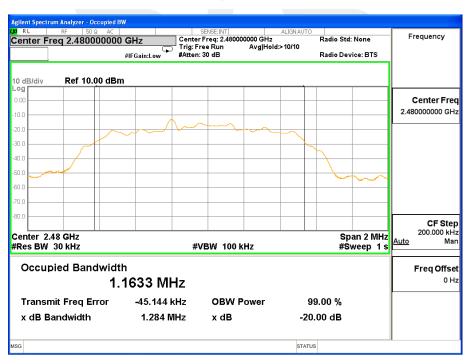
Shenzhen STS Test Services Co., Ltd.


1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

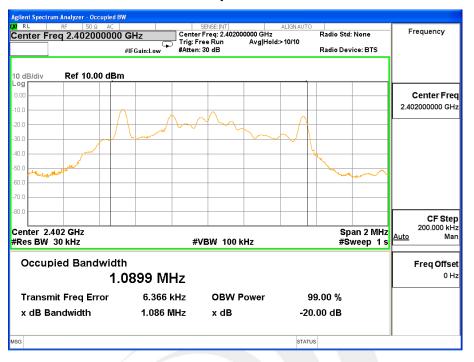
1Mbps CH00

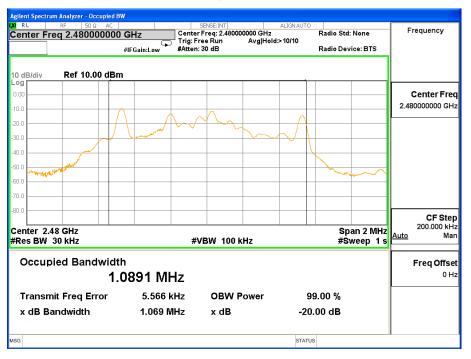


1Mbps CH78



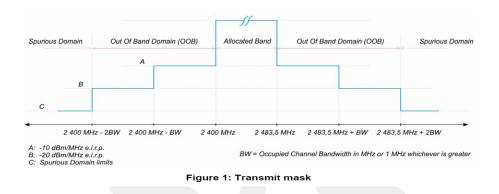
2Mbps CH00


2Mbps CH78


Shenzhen STS Test Services Co., Ltd.

3Mbps CH00

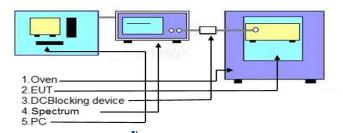
3Mbps CH78


Shenzhen STS Test Services Co., Ltd.

7. TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN

7.1 APPLIED PROCEDURES / LIMIT

Clause	Frequency	Limit
	2400-BW~2400 2483.5~2483.5+BW	-10dBm/MHz
4.3.1.9	2400-2BW~2400-BW 2483.5+BW~2483.5+2BW	-20dBm/MHz
	<2400-2BW >2483.5+2BW	-30dBm/MHz


7.2 MEASURING INSTRUMENTS AND SETTING

Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.9.2 for the measurement method.

For systems using FHSS modulation, the measurements shall be performed during normal operation (hopping).

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: 2 484 MHz
- Span: 0 Hz
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep Mode: Continuous
- Sweep Points: Sweep Time [s] / (1 μ s) or 5 000 whichever is greater
- Trigger Mode: Video trigger
- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

7.3 TEST SETUP LAYOUT

Shenzhen STS Test Services Co., Ltd.

7.4 TEST RESULT

GFSK

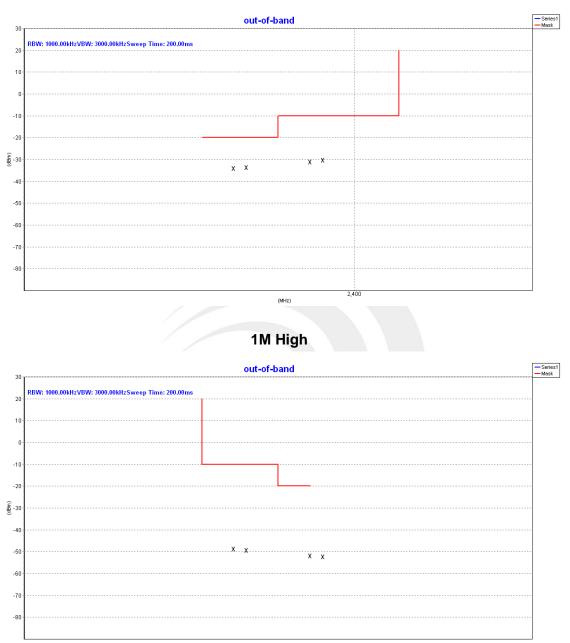
		Low		High	
Test Condition		OOB EMIS	SION(MHz)	OOB EMIS	SION(MHz)
		Segment A	Segment B	Segment A	Segment B
		maximum	maximum	maximum	maximum
		power	power	power	power
		dBm/MHz)	dBm/MHz)	dBm/MHz)	dBm/MHz)
Tnom ℃	Vnom(v)	-30.34	-33.62	-49.67	-51.12
Limit (dBm)		-10.00	-20.00	-10.00	-20.00
PASS/FAIL		PASS	PASS	PASS	PASS

Π/4QPSK

		Low		High	
Test Condition		OOB EMISSION(MHz)		OOB EMISSION(MHz)	
		Segment A	Segment B	Segment A	Segment B
		maximum power	maximum power	maximum power	maximum power
		dBm/MHz)	dBm/MHz)	dBm/MHz)	dBm/MHz)
Tnom ℃	Vnom(v)	-30.78	-37.27	-49.92	-54.00
Limit (dBm)		-10.00	-20.00	-10.00	-20.00
PASS/FAIL		PASS	PASS	PASS	PASS

8DPSK

		Low		High	
Test Condition		OOB EMISSION(MHz)		OOB EMISSION(MHz)	
		Segment A	Segment B	Segment A	Segment B
		maximum power	maximum power	maximum power	maximum power
		dBm/MHz)	dBm/MHz)	dBm/MHz)	dBm/MHz)
Tnom ℃	Vnom(v)	-30.43	-36.13	-50.00	-53.06
Limit (dBm)		-10.00	-20.00	-10.00	-20.00
PASS/FAIL		PASS	PASS	PASS	PASS



Page 36 of 51

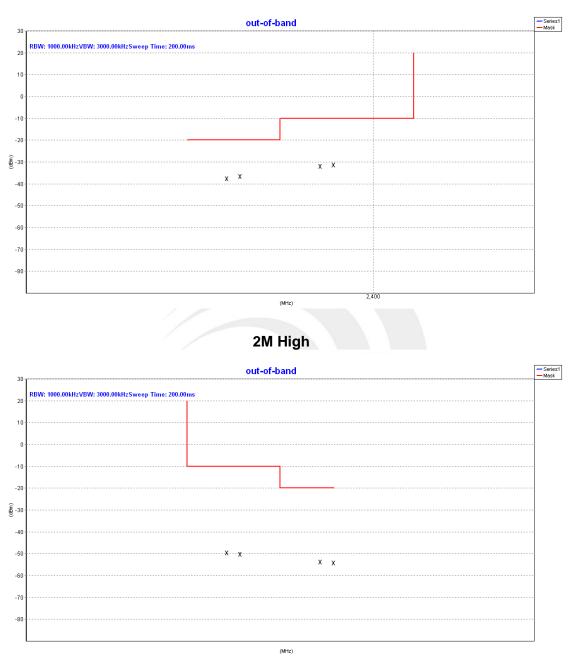
Report No.: STS1609183W02

Test Plot(Worst Mode)

1M Low

(MHz)

Shenzhen STS Test Services Co., Ltd.



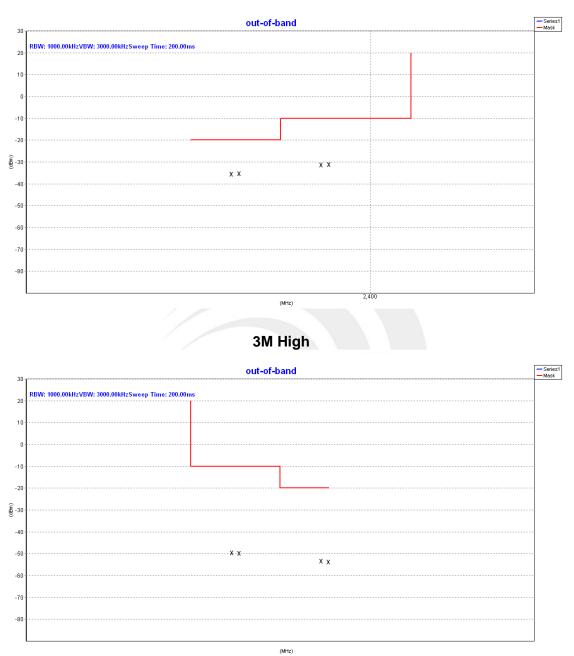
Page 37 of 51

Report No.: STS1609183W02

Test Plot(Worst Mode)

2M Low

Shenzhen STS Test Services Co., Ltd.



Page 38 of 51

Report No.: STS1609183W02

Test Plot(Worst Mode)

3M Low

Shenzhen STS Test Services Co., Ltd.

8. SPURIOUS EMISSIONS – TRANSMITTER

8.1 APPLIED PROCEDURES / LIMIT

Frequency range	Maximum power, e.r.p(≤1 GHz) e.i.r.p(> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 KHz
47 MHz to 74 MHz	-54 dBm	100 KHz
74 MHz to 87.5 MHz	-36 dBm	100 KHz
87.5 MHz to 118 MHz	-54 dBm	100 KHz
118 MHz to 174 MHz	-36 dBm	100 KHz
174 MHz to 230 MHz	-54 dBm	100 KHz
230 MHz to 470 MHz	-36 dBm	100 KHz
470 MHz to 862 MHz	-54 dBm	100 KHz
862 MHz to 1 GHz	-36 dBm	100 KHz
1 GHz to 12.75 GHz	-30 dBm	1 MHz

8.2 MEASURING INSTRUMENTS AND SETTING

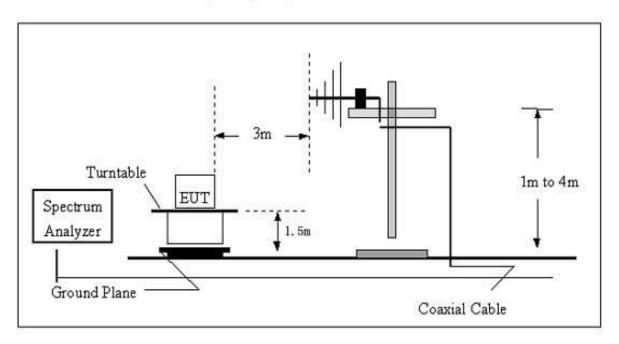
Please refer to refer to ETSI EN 300 328 (V1.9.1) clause 4.3.1.10&5.3.10. The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Frequency Start to Stop	30 MHz to 1 000 MHz
Resolution bandwidth / Video bandwidth	100 kHz / 300 kHz
Filter type:	3 dB (Gaussian)
Detector mode	Peak
Trace Mode	Max Hold
Sweep Points	≥ 19 400 (Set as 20 000)

Spectrum Analyzer	Setting
Frequency Start to Stop	1000 MHz to 12750MHz
Resolution bandwidth / Video bandwidth	1 MHz / 3 MHz
Filter type:	3 dB (Gaussian)
Detector mode	Peak
Trace Mode	Max Hold
Sweep Points	≥ 23 500 (Set as 24 000)

Shenzhen STS Test Services Co., Ltd.

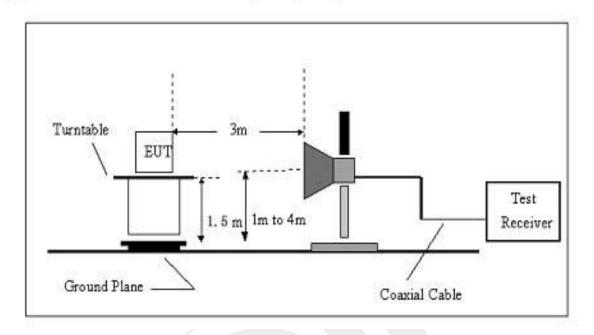
Page 40 of 51



8.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.
- I. EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.

8.4 TEST SETUP LAYOUT


(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

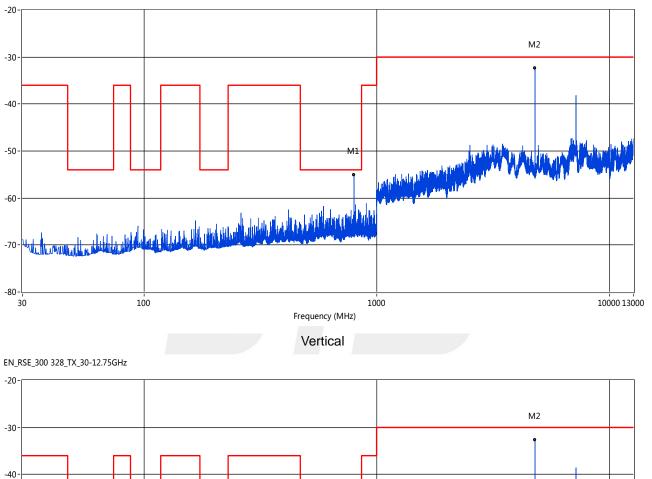
(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

8.5 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously transmitting mode.

For the initial investigation on the highest, middle, lowest frequency, no significant differences in spurious emissions were observed between these 3 modes. The worst test data was shown:

Page 42 of 51


8.6 TEST RESULT (30MHz ~ 12750MHz)

Radiated Emissions:

TX GFSK/2402MHz

Horizontal

EN_RSE_300 328_TX_30-12.75GHz

30

-50

-60

-70

-80-

1. The emission behaviour belongs to narrowband spurious emission.

100

2. The all data rate modes had been test, but only worse test data was recorded in the test report.

ية. فأرارًا في بالاليا بي

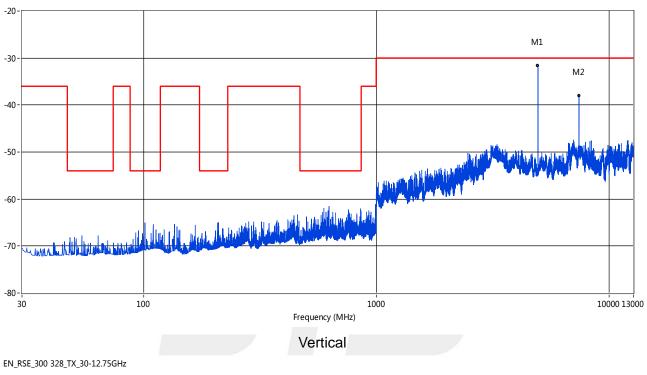
Frequency (MHz)

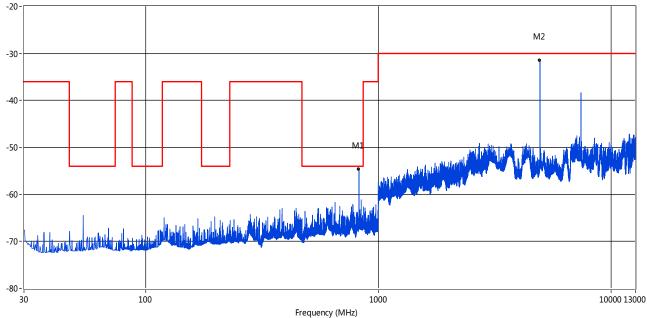
1000

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

10000 13000


TEST RESULT(30MHz ~ 12750MHz)


Radiated Emissions:

TX GFSK/2480MHz

Horizontal

EN_RSE_300 328_TX_30-12.75GHz

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

2. The all data rate modes had been test, but only worse test data was recorded in the test report.

Shenzhen STS Test Services Co., Ltd.

9. SPURIOUS EMISSIONS – RECEIVER

9.1 APPLIED PROCEDURES / LIMIT

Clause	Test Item	Frequency(MHz)	Limit	
4.0.4.44	Spurious emissions	30-1000	-57dBm	
4.3.1.11		1000-12750	-47dBm	

9.2 MEASURING INSTRUMENTS AND SETTING

Please refer to refer to ETSI EN 300 328 (V1.9.1) clause 4.3.1.11&5.3.11. The following table is the setting of the Spectrum Analyzer.

Spectrum Analyzer	Setting
Frequency Start to Stop	30 MHz to 1000MHz
Resolution bandwidth / Video bandwidth	100 kHz / 300 kHz
Filter type	3 dB (Gaussian)
Detector mode	Peak
Trace Mode	Max Hold
Sweep Points	≥19 400 (Set as 20000)
Sweep time	Auto

Spectrum Analyzer	Setting
Frequency Start to Stop	1000 MHz to 12750 MHz
Resolution bandwidth / Video bandwidth	1M / 3M
Filter type	3 dB (Gaussian)
Detector mode	Peak
Trace Mode	Max Hold
Sweep Points	≥23 500 (Set as 24 000)
Sweep time	Auto

9.3 TEST PROCEDURES

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz/1000~12750MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- The broadband receiving antenna was fixed on the same height with the EUT to find each d. suspected emissions of both horizontal and vertical polarization. Each recorded suspected
- value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).

The level of the spurious emission is the power level of (7) plus the gain of the standard

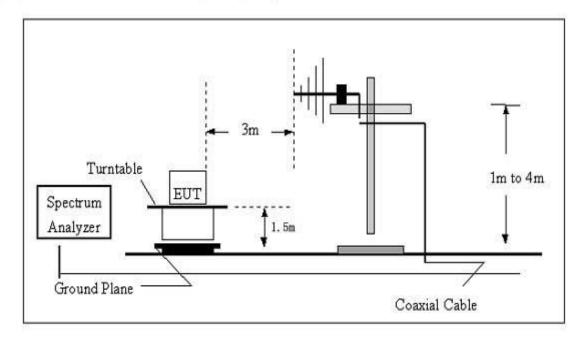
h. antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.

- i. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.
 - EUT Orthogonal Axis:©
- J. "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand.

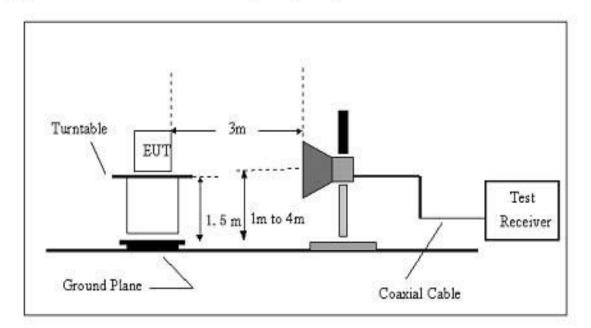
Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



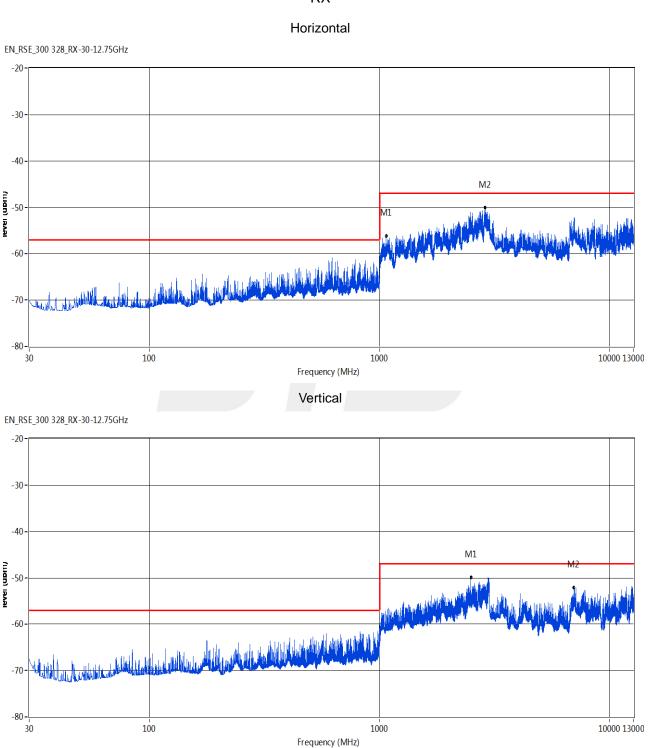
9.4 EUT OPERATION DURING TEST


The EUT was programmed to be in continuously receiving mode.

9.5 TEST SETUP LAYOUT

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz


Shenzhen STS Test Services Co., Ltd.

Page 46 of 51

9.6 TEST RESULT (30MHz ~ 12750MHz)

Radiated Emissions

RX

Remark:

1. The emission behaviour belongs to narrowband spurious emission.

2. The all data rate modes had been test, but only worse test data was recorded in the test report.

10. RECEIVER BLOCKING

10.1 APPLIED PROCEDURES / LIMIT

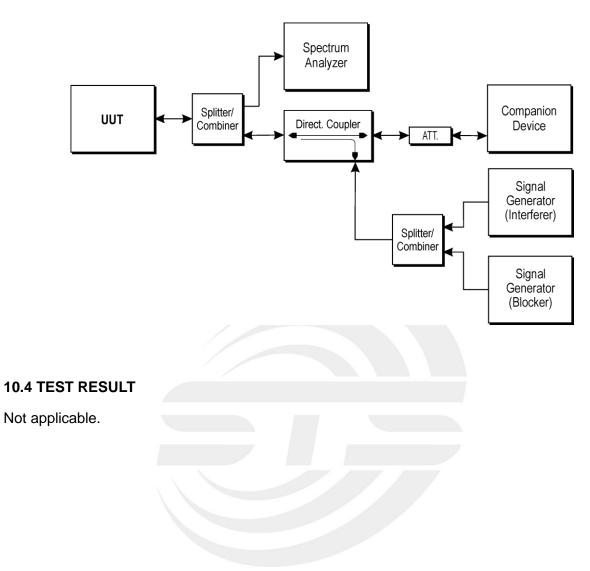
Adaptive Frequency Hopping equipment shall comply with the requirements defined in clause 4.3.1.7.2 (LBT based DAA) or clause 4.3.1.7.3 (non-LBT based DAA) in the presence of a blocking signal with characteristics as provided in table 3.

Table 3: Receiver Blocking parameters				
Equipment Type (LBT/non-LBT)	Wanted signal mean power from companion device	Blocking signal frequency[MHz]	Blocking signal power[dBm]	Type of interfering signal
LBT	Sufficient to maintain the link(see note 2)2395 or 2488.5 (see note 1)-35CW			
Non-LBT	-30 dBm	(111 111)		
Note 1: The highest blocking frequency shall be used for testing hopping frequencies within the range 2 400 MHz to 2 442 MHz, while the lowest blocking frequency shall be used for testing hopping frequencies within the range 2 442 MHz to 2 483,5 MHz. See clause 5.3.7.1.				
Note 2: A typical value which can be used in most cases is -50 dBm/MHz.				

10.2 TEST PROCEDURES

- 1. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.7.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.7.2 for the measurement method.
- RBW: ≥ Occupied Channel Bandwidth (use next available RBW setting above the

Occupied Channel Bandwidth)


- Filter type: Channel Filter
- RBW:1M

VBW:3M (Max 2M)

- Detector Mode: RMS
- Centre Frequency: Equal to the hopping frequency to be tested
- Span: 0 Hz
- Sweep time: > Channel Occupancy Time of the UUT. If the Channel Occupancy Time is non-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out.
- Trace Mode: Clear/Write
- Trigger Mode: Video

10.3 TEST SETUP LAYOUT

Shenzhen STS Test Services Co., Ltd.

Page 49 of 51

11. ADAPTIVE (CHANNEL ACCESS MECHANISM)

11.1 APPLIED PROCEDURES / LIMIT

The frequency range of the equipment is determined by the lowest and highest

Adaptive Frequency Hopping using LBT based DAA:

1. COT ≤ 60 ms;

2. Idle Period = 5% of COT;

3.Detection threshold level = -70 dBm/MHz + (20 dBm - Pout e.i.r.p.)/1 MHz (Pout in dBm).

Adaptive Frequency Hopping using other forms of DAA (non-LBT based):

1. The frequency shall remain unavailable for a minimum time equal to 1 second or 5 times the actual number of hopping frequencies in the current (adapted) channel map used by the equipment

2. COT ≤ 40ms;

3. Idle Period = 5% of COT;

4. Detection threshold level = -70 dBm/MHz + (20 dBm - Pout e.i.r.p.)/1 MHz (Pout in dBm).

Short Control Signalling Transmissions:

Short Control Signalling Transmissions shall have a maximum duty cycle TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.

11.2 TEST PROCEDURES

1. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.7.1 for the test conditions.

2. Please refer to ETSI EN 300 328 (V1.9.1) clause 5.3.7.2.1 for the measurement method.

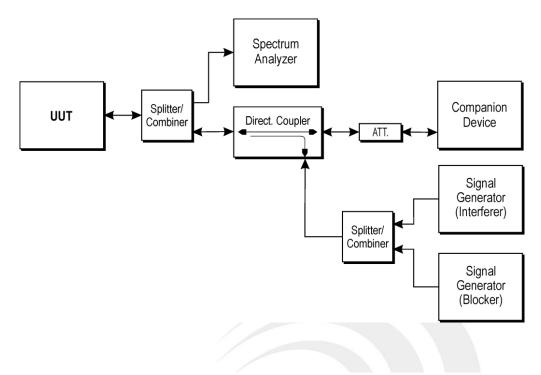
3. The spectrum analyzer sweep was triggered by the start of the interfering signal, with the interfering signal present, a 100 % duty cycle CW signal is inserted as the blocking signal. - RBW: ≥ Occupied Channel Bandwidth (if the analyzer does not support this setting, the

highest available setting shall be used)

- RBW: use next available RBW setting below the measured Occupied Channel Bandwidth

- Filter type: Channel Filter
- RBW:1M/VBW:3M
- Detector Mode: RMS
- Centre Frequency: Equal to the hopping frequency to be tested
- Span: 0 Hz

- Sweep time: > Channel Occupancy Time of the UUT. If the Channel Occupancy Time is non-contiguous (non-LBT based equipment), the sweep time shall be sufficient to cover the period over which the Channel Occupancy Time is spread out.


- Trace Mode: Clear/Write

- Trigger Mode: Video

Equipment Type (LBT/non- LBT)	Wanted signal mean power from companion device	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of interfering signal
LBT Non-LBT	sufficient to maintain the link (see note 2) -30 dBm	2 395 or 2 488,5 (see note 1)	-35	CW
NOTE 1: The highest blocking frequency shall be used for testing hopping frequencies within the range 2 400 MHz to 2 442 MHz, while the lowest blocking frequency shall be used for testing hopping frequencies within the range 2 442 MHz to 2 483,5 MHz. See clause 5.3.7.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.				

11.3 TEST SETUP LAYOUT

11.4 TEST RESULTS

Mode	Stop time after interfering signal(s)		
	low	high	
TX Mode	N/A	N/A	

Short Control Signalling Transmissions

Mada	Maximum duty cycle(ms)		Limit(ma)
Mode –	Low	High	Limit(ms)
TX mode	N/A	N/A	N/A

The EUT is not applicable

Page 51 of 51

Measurement Photos

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.