

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

For Bluetooth

Report Reference No::	TRE1603019107	R/C:	14043
-----------------------	---------------	------	-------

Applicant's name.....: Vonino Electronics Limited

Kowloon, Hong Kong

Manufacturer...... Vonino Electronics Limited

Address...... Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui,

Kowloon, Hong Kong

Test item description: XAVY L8 / Epic M8

Trade Mark vonino

Model/Type reference...... T8S

Listed Model(s) -

Standard: ETSI EN 300 328 V1.9.1: 2015-02

Date of receipt of test sample...... Mar 29, 2016

Date of testing...... Mar 30, 2016- Apr 20, 2016

Date of issue...... Apr 20, 2016

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Shayne Zhu

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Shayre Zhu Cron Con Mours mu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE1603019107 Page: 2 of 25 Issued: 2016-04-20

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	SUMMARY	4
==		-
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	EUT operation mode	7
2.4.	EUT configuration	7
2.5.	Modifications	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	9
3.4.	Statement of the measurement uncertainty	9
3.5.	Equipments Used during the Test	10
<u>4.</u>	TEST CONDITIONS AND RESULTS	11
4.1.	Maximum transmit news	11
4. 1. 4.2.	Maximum transmit power	13
4.2. 4.3.	Maximum e.i.r.p. spectral density Adaptivity andRecever blocking	15
4.3. 4.4.	Occpied Channel Bandidth	16
4.5.	Transmitter unwanted emissions in the out-of-band domain	18
4.6.	Transmitter unwanted emissions in the spurious domain	20
4.7.	Receiver spuriousemissions	22
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	24
6.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	25

Report No: TRE1603019107 Page: 3 of 25 Issued: 2016-04-20

1. Test standards and Test description

1.1. Test Standards

The tests were performed according to following standards:

ETSI EN 300 328V1.9.1(2015-02)—Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized ENcovering the essential requirements of article 3.2 of the R&TTE Directive

1.2. Test Description

Test item	Standards requirement	Result
Maximum transmit power	ETSI EN 300 328 Sub-clause 4.3.2.2	Pass
Power Spectral Density	ETSI EN 300 328 Sub-clause 4.3.2.3	Pass
Duty Cycle, Tx-sequence, Tx-gap	ETSI EN 300 328Sub-clause 4.3.2.4	N/A
Medium Utilisation (MU) factor	ETSI EN 300 328 Sub-clause 4.3.2.5	N/A
Adaptivity	ETSI EN 300 328 Sub-clause 4.3.2.6	N/A
Occupied Channel Bandwidth	ETSI EN 300 328 Sub-clause 4.3.2.7	Pass
Transmitter unwanted emissions in the out-of-band domain	ETSI EN 300 328 Sub-clause 4.3.2.8	Pass
Transmitter unwanted emissions in the spurious domain	ETSI EN 300 328 Sub-clause 4.3.2.9	Pass
Receiver spurious emissions	ETSI EN 300 328 Sub-clause 4.3.2.10	Pass
Receiver Blocking	ETSI EN 300 328 Sub-clause 4.3.2.11	N/A
Geo-location capability	ETSI EN 300 328 Sub-clause 4.3.2.12	N/A

Remark: The measurement uncertainty is not included in the test result.

N/A is an abbreviation for Not Applicable and means this test item is not applicableforthis device according to the technology characteristic of device.

Report No: TRE1603019107 Page: 4 of 25 Issued: 2016-04-20

2. **Summary**

2.1. Client Information

Applicant:	Vonino Electronics Limited
Address:	Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong
Manufacturer:	Vonino Electronics Limited
Address:	Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon, Hong Kong

2.2. Product Description

Name of EUT	XAVY L8 / Epic M8
Trade Mark:	vonino
Model/Type reference:	T8S
Listed Model(s):	-
Power supply:	DC 3.7V From internal battery
Adapter information:	Model:FJ-SW728L0502000UE Input:AC 100-240V,50/60Hz 0.4A Max Output: 5Vd.c., 2000mA

Report No: TRE1603019107 Page: 5 of 25 Issued: 2016-04-20

Technical index for Bluetooth								
Supported type:	Bluetooth 4.0+BLE							
Operation frequency:	2402MHz~2480MHz							
Channel number:	40							
Channel separation:	2MF	2MHz						
Modulation:		FHS	S		Other forms of modulation GFSK			
Type of Equipment:		Stan	id-alone		Combined Equipment			
		Plug	-in radio device		Other			
Adaptive / non-adaptive		non-	adaptive Equipment					
equipment		adap mod		possi	bility to switch to a non-adaptive			
	\boxtimes	adap	otive Equipment which can a	also o	perate in a non-adaptive mode			
Operating mode:	\boxtimes	Sing	le Antenna Equipment					
		\boxtimes	Equipment with only 1 ante	enna				
			Equipment with 2 diversity any moment in time	anter	nnas but only 1 antenna active at			
			Smart Antenna Systems w (legacy) mode where only		or more antennas, but operating in a nna is used.			
		Sma	ırt Antenna Systems - Multip	le An	tennas without beam forming			
			Single spatial stream / Sta	ndard	throughput			
			High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1					
			High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2					
		Sma	ırt Antenna Systems - Multip	le An	tennas with beam forming			
			Single spatial stream / Star	ndard	throughput			
			High Throughput (> 1 spat Bandwidth 1	ial stre	eam) using Occupied Channel			
			High Throughput (> 1 spat Bandwidth 2	ial stre	eam) using Occupied Channel			
Antenna type:	\boxtimes	Integ	gral Antenna					
			Temporary RF connector p	rovid	ed			
		\boxtimes	No temporary RF connector	or pro	vided			
		Ante	enna Gain:1.2 dBi					
		Bear	eamforming gain:0dB					
		Dedi	edicated Antennas (equipment with antenna connector)					
			Single power level with corresponding antenna(s)					
			Multiple power settings and corresponding antenna(s)					
			Number of different Power	Leve	ls:			
		Power Level 1: dBm						
		Power Level 2: dBm						
			Power Level 3: dE	3m				

Report No: TRE1603019107 Page: 6 of 25 Issued: 2016-04-20

nformation is provided by the supplier						
In case of FHSS		In ca	se of non-Adap	tive Frequency Hopping equipment:		
modulation:		The	number of Hopp	ing Frequencies:		
				Frequency Hopping Equipment:		
				er of Hopping Frequencies:		
				er of Hopping Frequencies:		
			Time:			
		The Minimum Channel Occupation Time:				
In case of adaptive equipment:		The Channel Occupancy Time implemented by the equipment: / ms				
счиртен.				mplemented an LBT based DAA mechanism tusing modulation different from FHSS:		
			• •	•		
			• •	is Frame Based equipment		
			• •	is Load Based equipment		
		Ш	Load Based eq	can switch dynamically between Frame Based and pulpment		
		The	CCA time imple	mented by the equipment:/ μs		
		The	equipment has i	mplemented an non-LBT based DAA mechanism		
		The	eguipment can o	operate in more than one adaptive mode		
In case of non-adaptive	The			Power (e.i.r.p.): dBm		
Equipment			•	nding) Duty Cycle: %		
The worst case operationa			, ,	<u> </u>		
RF Output Power				-0.71 dBm		
Occupied Channel Bandwidt	:h			1.028MHz		
Transmitter unwanted emiss	ions ir	the (OOB domain	Reference to section 4.5		
Transmitter unwanted emiss	ions ir	n the s	spurious	Reference to section 4.6		
domain						
Receiver spurious emissions	3			Reference to section 4.7		
FHSS						
Dwell time:						
Minimum FrequencyC	Occupa	ation:				
Hopping Sequence:						
Hopping Frequency S	Separa	ation				
○ Other						
Power Spectral Dens	ity:			-0.86dBm/MHz		
Adaptive equipment						
Adaptivity:				-		
Receiver Blocking:	Receiver Blocking:			-		
☐ Non-adaptiveequipment						
Duty cycle:						
Tx-Sequence:						
Tx-gap:						
Medium Utilisation:						

Report No: TRE1603019107 Page: 7 of 25 Issued: 2016-04-20

2.3. EUT operation mode

The EUT has been tested under test modecondition. The Applicant providessoftware to control the EUT for staying in continous transmitting and receiving mode for testing.

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

Length (m) :	/
Shield:	/
Detachable :	1
Manufacturer:	/
Model No. :	/

2.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE1603019107 Page: 8 of 25 Issued: 2016-04-20

3. Test Environment

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

VCC

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

Report No: TRE1603019107 Page: 9 of 25 Issued: 2016-04-20

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	Normal Temperature:	25°C
Temperature	High Temperature:	55°C
	Low Temperature:	-20°C
	Normal Voltage	DC 3.70V
Voltage	High Voltage	DC 4.25V
	Low Voltage	DC 3.50V
Othor	lative Humidity	55 %
Other	Air Pressure	989 hPa

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	MeasurementUncertainty	Notes
Frequency range	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Power Spectral Density	2.20 dB	(1)
Radiated spurious emission	2.20 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE1603019107 Page: 10 of 25 Issued: 2016-04-20

3.5. Equipments Used during the Test

TS89	97					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Signal generator	R&S	SMB100A	177956	11/3/2015	11/2/2016
2	Signal and spectrum analyzer	R&S	FSV40	100048	11/3/2015	11/2/2016
3	OSP	R&S	OSP120	101317	11/3/2015	11/2/2016
4	OSP	R&S	OSP-B157	100890	11/3/2015	11/2/2016
5	Climate Chamber	ESPEC	EL-10KA	05107008	11/3/2015	11/2/2016
6	POWER SUPPLY	R&S	NGMO1	1504.8420	11/3/2015	11/2/2016
7	Vector signal generator	R&S	SMBV100A	260790	11/3/2015	11/2/2016

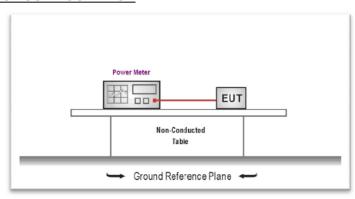
The Cal. Interval was one year

Report No: TRE1603019107 Page: 11 of 25 Issued: 2016-04-20

4. Test conditions and Results

4.1. Maximum transmit power

LIMIT


ETSI EN 300 328 Sub-clause 4.3.2.2.3

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, themaximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.

TEST CONFIGURATION

TEST PROCEDURE

Refer to ETSI EN 300 328 Sub-clause 5.3.2.2 Power Meter: sample speed 1MS/s or faster

Test bursts: 400

Report No: TRE1603019107 Page: 12 of 25 Issued: 2016-04-20

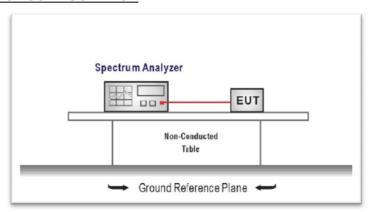
TEST RESULTS

		BT4.0	+BLE		
Test conditions					
Temperature (\mathcal{C})	Voltage (V)	Channel	EIRP (dBm)	Limit (dBm)	Result
		CH00	-1.82		
Tnor=25	3.70	CH19	-0.82		
		CH39	-1.86		
		CH00	-1.92		
	3.50 4.25	CH19	-0.91		
TI. 00		CH39	-1.98		
Tlow=-20		CH00	-1.66		
		CH19	-0.73	20.00	Pass
		CH39	-1.76		
		CH00	-1.93		
	3.50	CH19	-0.91		
Thigh=+55		CH39	-1.99		
		CH00	-1.74		
	4.25	CH19	-0.71		
		CH39	-1.73		

Note

1. Measured Power include the cable loss.

Report No: TRE1603019107 Page: 13 of 25 Issued: 2016-04-20


4.2. Maximum e.i.r.p. spectral density

LIMIT

ETSI EN 300 328Sub-clause 4.3.2.3.3

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz.

TEST CONFIGURATION

TEST PROCEDURE

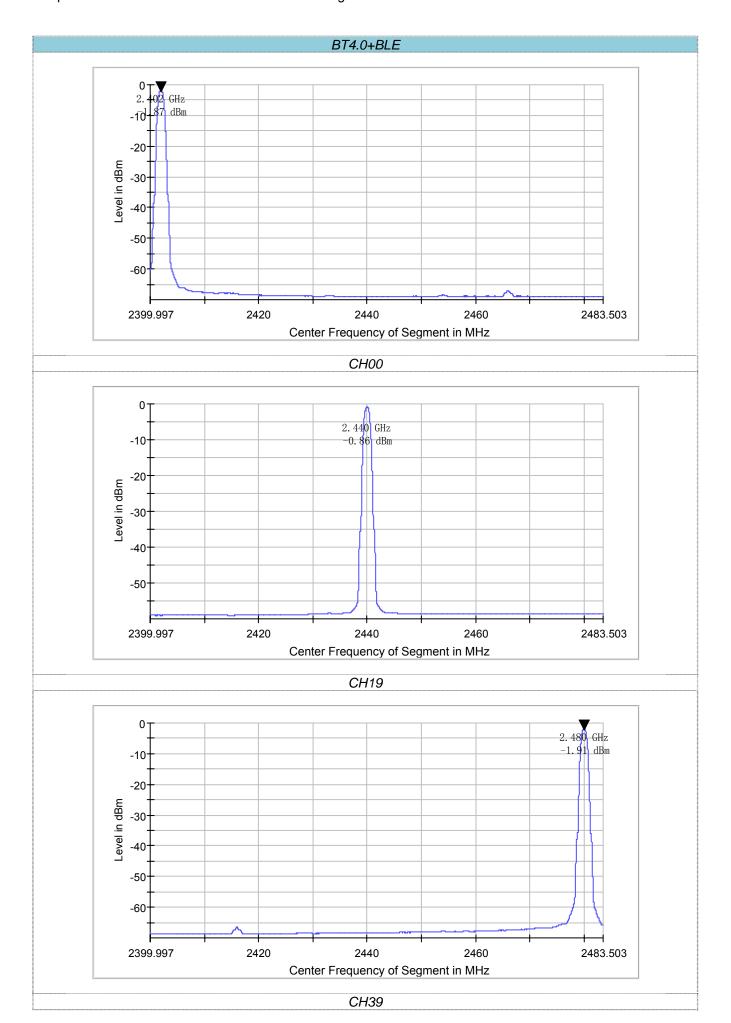
1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.

2. Please refer to ETSI EN 300 328 Sub-clause 5.3.3 for the measurement method.

Frequency range: 2400MHz-2483.5MHz

RBW/VBW: 10KHz/30KHz Sweep points/time: >8350 / Auto

Detector: RMS


TEST RESULTS

Mode	Channel	EIRP Density (dBm/MHz)	Limit (dBm/MHz)	Result
BT4.0+BLE	CH00	-1.87		
	CH19	-0.86	10.00	Pass
	CH39	-1.91		

Note: Measured Power include the cable loss

Test plot as follows:

Report No: TRE1603019107 Page: 14 of 25 Issued: 2016-04-20

Report No: TRE1603019107 Page: 15 of 25 Issued: 2016-04-20

4.3. Adaptivity and Recever blocking

LIMIT

ETSI EN 300 328Sub-clause 4.3.2.6

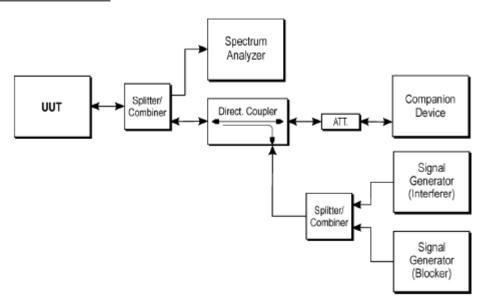
The frequency range of the equipment is determined by the lowest and highest

Non-LBT based Detect and Avoid

- 1 The frequency shall remain unavailable for a minimum time equal to 1 secondafter which the channel maybe considered again as an 'available' channel:
- 2 COT \leq 40 ms;
- 3 Idle Period = 5% of COT;
- 4 Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz(Pout in dBm);

LBT based Detect and Avoid (Frame Based Equipment):

- 1 Minimum Clear Channel Assessment (CCA) time = 18 us;
- 2 CCA observation time declared by the supplier;
- 3 COT = $1 \sim 10$ ms;
- 4 Idle Period = 5% of COT;
- 5 Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz(Pout in dBm);


LBT based Detect and Avoid (Load Based Equipment):

- 1 Minimum Clear Channel Assessment (CCA) time = 18 us;
- 2 CCA declared by the manufacturer;
- 3 COT ≤ 13ms:
- 4 Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz(Pout in dBm);

Short Control Signalling Transmissions:

Short Control Signalling Transmissions shall have a maximum duty cycle of 10%within an observation period of 50ms.

TEST CONFIGURATION

TEST PROCEDURE

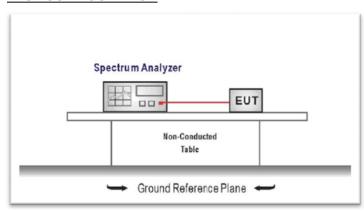
- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- Please refer to ETSI EN 300 328 Sub-clause 5.3.7 for the measurement method.

TEST RESULTS

Not Application, This requirement dose not apply for equipment with a maximum declared RF Output power level of less than 10dBm e.i.r.p or for equipment when operating in a mode where the RF Output power is less than 10dBm e.i.r.p. The EUT's RF Output power is less 10dBm.

Report No: TRE1603019107 Page: 16 of 25 Issued: 2016-04-20

4.4. Occpied Channel Bandidth


LIMIT

ETSI EN 300 328 Sub-clause 4.3.2.7.3

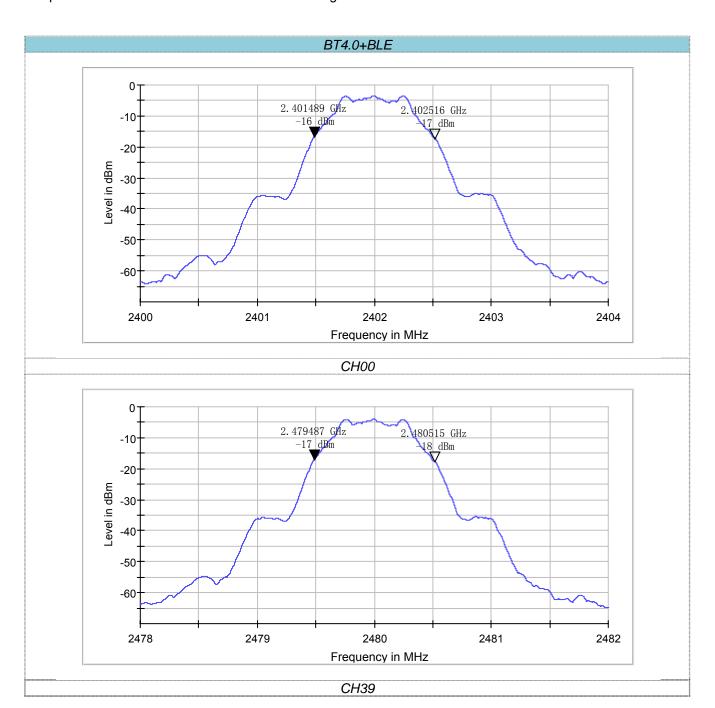
The Occupied Channel Bandwidth shall fall completely within the band given in clause 1.

In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.8 for the measurement method.


Centre Frequency:The centre frequency of the channel under test Resolution BW: ~ 1 % of the span without going below 1 %(30KHz) Video BW:3 × RBW(100KHz)
Frequency Span:2 × Occupied Channel Bandwidth (2MHZ)
Detector Mode:RMS
Trace Mode:Max Hold

TEST RESULTS

Modulation	Channel	Occupied Channel Bandwidth (MHz)	Result	
BT4.0+BLE	CH00	1.027	Daga	
D14.U+DLE	CH39	1.028	Pass	

Test plot as follows:

Report No: TRE1603019107 Page: 17 of 25 Issued: 2016-04-20

Report No: TRE1603019107 Page: 18 of 25 Issued: 2016-04-20

4.5. Transmitter unwanted emissions in the out-of-band domain

LIMIT

ETSI EN 300 328 Sub-clause 4.3.2.8.3

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

NOTE: Within the 2 400 MHz to 2 483,5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.7.

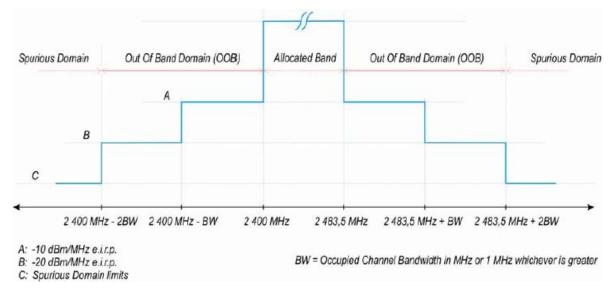
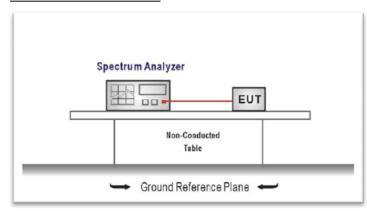



Figure 3: Transmit mask

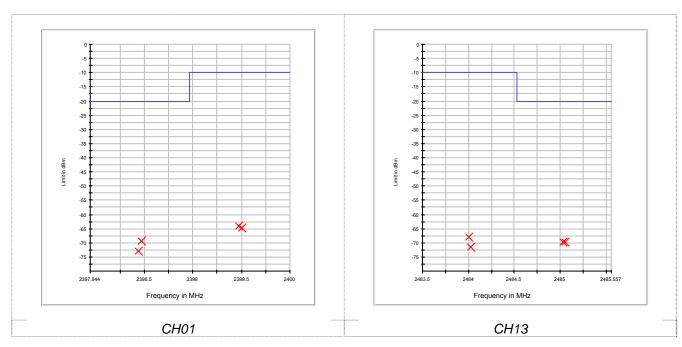
TEST CONFIGURATION

TEST PROCEDURE

- 1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.9 for the measurement method.

RBW/ VBW: 1MHz/3MHz

Span: 0Hz


Filter mode: Channel filter

Detector: RMS

TEST RESULTS

Report No: TRE1603019107 Page: 19 of 25 Issued: 2016-04-20

BT4.0+BLE							
Test conditions			Frequency range (MHz)		1	Linait	
Temperature $({}^{\mathcal{C}})$	Voltage (V)	Channel	Start	Stop	Level (dBm)	Limit (dBm)	Result
Table 05 0 70		00	2400-20BW	2400-OBW	-69.32	-20	Pass
	3.70		2400-OBW	2400	-64.78	-10	Pass
Tnor=25	3.70	39	2484	2484+OBW	-67.52	-10	Pass
			2484+OBW	2484+20BW	-69.89	-20	Pass
		00	2400-20BW	2400-OBW	-69.60	-20	Pass
	3.50		2400-OBW	2400	-64.07	-10	Pass
	3.50	39	2484	2484+OBW	-68.32	-10	Pass
Tlow=-20			2484+OBW	2484+20BW	-70.69	-20	Pass
110W=-20		00	2400-20BW	2400-OBW	-70.65	-20	Pass
4.25	4.05		2400-OBW	2400	-65.03	-10	Pass
	4.20	39	2484	2484+OBW	-67.54	-10	Pass
	39	2484+OBW	2484+20BW	-69.98	-20	Pass	
	3.50	00	2400-20BW	2400-OBW	-70.81	-20	Pass
Thigh=+55			2400-OBW	2400	-65.49	-10	Pass
		39	2484	2484+OBW	-67.02	-10	Pass
		39	2484+OBW	2484+20BW	-70.66	-20	Pass
	4.25	00	2400-20BW	2400-OBW	-70.00	-20	Pass
			2400-OBW	2400	-66.09	-10	Pass
		39	2484	2484+OBW	-71.11	-10	Pass
			2484+OBW	2484+20BW	-69.90	-20	Pass

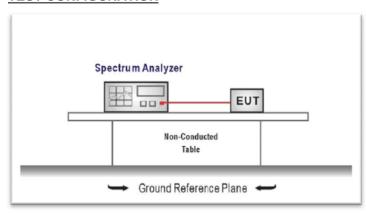
Note:

- 1. * Radiant level is far less than the limit, has more than 20 dB margin
- 2. Only show the test plot on normal condition

Report No: TRE1603019107 Page: 20 of 25 Issued: 2016-04-20

4.6. Transmitter unwanted emissions in the spurious domain

LIMIT


ETSI EN 300 328Sub-clause 4.3.2.9.3

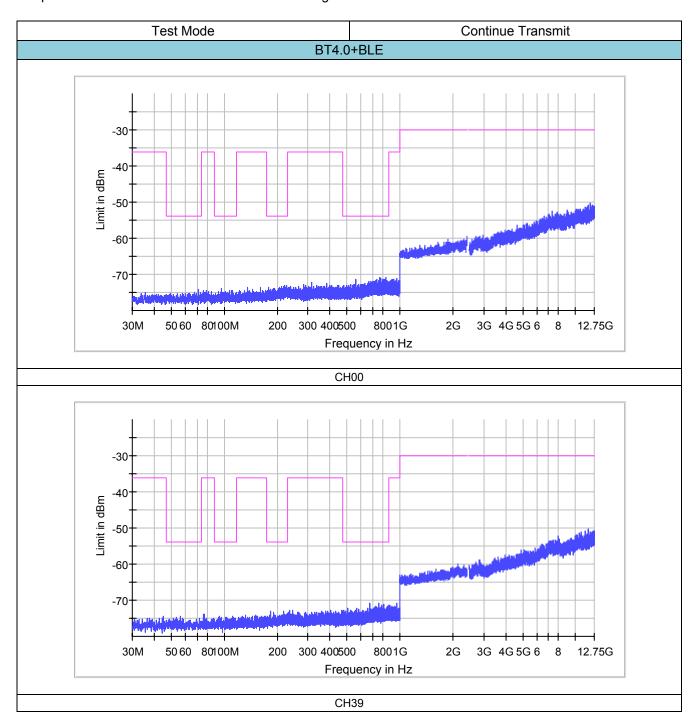
- The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 1.

Table 1: Transmitter limits for spurious emissions

Frequency Range	Maximum power e.r.p.(.≤1 GHz) e.i.r.p.(>1 GHz)	Limit when Standby
30 MHz to 47 MHz	-36 dBm	100 KHz
47 MHz to 74 MHz	-54 dBm	100 KHz
74MHz to 87.5 MHz	-36 dBm	100 KHz
87.5 MHz to 118 MHz	-54 dBm	100 KHz
118 MHz to 174 MHz	-36 dBm	100 KHz
174 MHz to 230 MHz	-54 dBm	100 KHz
230 MHz to 470 MHz	-36 dBm	100 KHz
470 MHz to 862 MHz	-54 dBm	100 KHz
862 MHz to 1GHz	-36 dBm	100 KHz
1 GHz to 12.75GHz	-30 dBm	1 MHz

TEST CONFIGURATION

TEST PROCEDURE


- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.10.2 for the measurement method.

Resolution Bandwidth: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz) Video Bandwidth: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)

Detector: Peak for prescan/RMS for emission retest

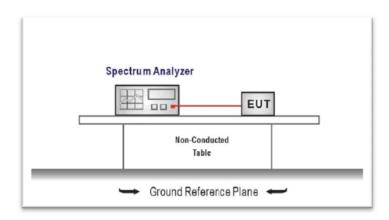
TEST RESULTS

Report No: TRE1603019107 Page: 21 of 25 Issued: 2016-04-20

Report No: TRE1603019107 Page: 22 of 25 Issued: 2016-04-20

4.7. Receiver spuriousemissions

LIMIT


ETSI EN 300 328 Sub-clause 4.3.2.10.3

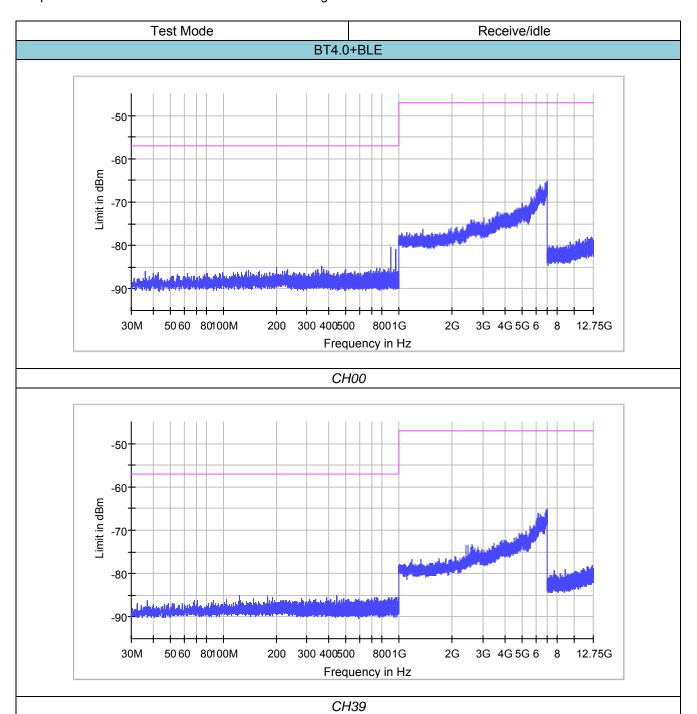
The spurious emissions of the receiver shall not exceed the values given in table 2.

Table 2: spurious emission limits for receivers

Frequency	Maximum power, e.r.p.	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 KHz
1 GHz to 12.75 GHz	-47 dBm	1 MHz

TEST CONFIGURATION

TEST PROCEDURE


- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1for the test conditions.
- 2. Please refer to ETSI EN 300328 Sub-clause 5.3.11.2for the measurement method.

Resolution Bandwidth: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz) Video Bandwidth: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)

Detector: Peak for prescan/RMS for emission retest

TEST RESULTS

Report No: TRE1603019107 Page: 23 of 25 Issued: 2016-04-20

Report No: TRE1603019107 Page: 24 of 25 Issued: 2016-04-20

5. Test Setup Photos of the EUT

Report No: TRE1603019107 Page: 25 of 25 Issued: 2016-04-20

6. External and Internal Photos of the EUT

Reference to the test report No. TRE1603019101

-----End of Report-----