



| TE                                                                            | EST REPORT                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Report Reference No                                                           | <b>TRE1603019106</b> R/C: 14043                                                                                                                                                                                                                                      |  |  |  |
| Applicant's name:<br>Address                                                  | Vonino Electronics Limited<br>Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui,<br>Kowloon, Hong Kong<br>Vonino Electronics Limited                                                                                                                        |  |  |  |
| Address                                                                       | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui,<br>Kowloon, Hong Kong                                                                                                                                                                                    |  |  |  |
| Test item description:                                                        | XAVY L8 / Epic M8                                                                                                                                                                                                                                                    |  |  |  |
| Trade Mark                                                                    | vonino                                                                                                                                                                                                                                                               |  |  |  |
| Model/Type reference                                                          | T8S                                                                                                                                                                                                                                                                  |  |  |  |
| Listed Model(s)                                                               | _                                                                                                                                                                                                                                                                    |  |  |  |
| Standard:                                                                     | ETSI EN 300 328 V1.9.1: 2015-02                                                                                                                                                                                                                                      |  |  |  |
| Date of receipt of test sample                                                | Mar 29, 2016                                                                                                                                                                                                                                                         |  |  |  |
| Date of testing                                                               | Mar 30, 2016- Apr 20, 2016                                                                                                                                                                                                                                           |  |  |  |
| Date of issue                                                                 | Apr 20, 2016                                                                                                                                                                                                                                                         |  |  |  |
| Result                                                                        | PASS                                                                                                                                                                                                                                                                 |  |  |  |
| Compiled by<br>( position+printed name+signature):                            | File administrators Shayne Zhu                                                                                                                                                                                                                                       |  |  |  |
| Supervised by<br>( position+printed name+signature):                          | Project Engineer Lion Cai Gion Cari<br>RE Manager Hans Hu Mouns Mu                                                                                                                                                                                                   |  |  |  |
| Approved by<br>( position+printed name+signature):                            | RF Manager Hans Hu Hours Mu                                                                                                                                                                                                                                          |  |  |  |
| Testing Laboratory Name                                                       | Shanzhan Huatangwai International Increation Co. 1 td                                                                                                                                                                                                                |  |  |  |
| Testing Laboratory Name         Address                                       | Shenzhen Huatongwei International Inspection Co., Ltd<br>1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,<br>Tianliao, Gongming, Shenzhen, China                                                                                                             |  |  |  |
| Shenzhen Huatongwei International                                             | Inspection Co., Ltd. All rights reserved.                                                                                                                                                                                                                            |  |  |  |
| Shenzhen Huatongwei International Ins<br>of the material. Shenzhen Huatongwei | whole or in part for non-commercial purposes as long as the pection Co., Ltd is acknowledged as copyright owner and source International Inspection Co., Ltd takes no responsibility for and will ng from the reader's interpretation of the reproduced material due |  |  |  |
|                                                                               |                                                                                                                                                                                                                                                                      |  |  |  |

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# Contents

| <u>1.</u> | TEST STANDARDS AND TEST DESCRIPTION                                          | 3  |
|-----------|------------------------------------------------------------------------------|----|
| 1.1.      | Test Standards                                                               | 3  |
| 1.2.      | Test Description                                                             | 3  |
| <u>2.</u> | SUMMARY                                                                      | 4  |
| 2.1.      | Client Information                                                           | 4  |
| 2.2.      | Product Description                                                          | 4  |
| 2.3.      | EUT operation mode                                                           | 7  |
| 2.4.      | EUT configuration                                                            | 7  |
| 2.5.      | Modifications                                                                | 7  |
| <u>3.</u> | TEST ENVIRONMENT                                                             | 8  |
| 3.1.      | Address of the test laboratory                                               | 8  |
| 3.2.      | Test Facility                                                                | 8  |
| 3.3.      | Environmental conditions                                                     | 9  |
| 3.4.      | Statement of the measurement uncertainty                                     | 9  |
| 3.5.      | Equipments Used during the Test                                              | 10 |
| <u>4.</u> | TEST CONDITIONS AND RESULTS                                                  | 11 |
| 4.1.      | RF output power                                                              | 11 |
| 4.2.      | Accumulated Transmit Time, Minimum Frequency Occupation and Hopping Sequence | 13 |
| 4.3.      | Hopping Frequency Separation                                                 | 16 |
| 4.4.      | Occupied Channel Bandwidth                                                   | 18 |
| 4.5.      | Transmitter unwanted emissions in the out-of-band domain                     | 21 |
| 4.6.      | Transmitter unwanted emissions in the spurious domain                        | 25 |
| 4.7.      | Receiver spurious emissions                                                  | 27 |
| <u>5.</u> | TEST SETUP PHOTOS OF THE EUT                                                 | 29 |
| <u>6.</u> | EXTERNAL AND INTERNAL PHOTOS OF THE EUT                                      | 30 |

## 1. TEST STANDARDS AND TEST DESCRIPTION

## 1.1. Test Standards

The tests were performed according to following standards:

ETSI EN 300 328V1.9.1(2015-02)–Electromagnetic compatibility and Radio spectrum Matters (ERM);Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized ENcovering the essential requirements farticle 3.2 of the R&TTE Directive

## 1.2. Test Description

| Test item                                                                          | Standards requirement               | Result |
|------------------------------------------------------------------------------------|-------------------------------------|--------|
| RF output power                                                                    | ETSI EN 300 328 Sub-clause 4.3.1.2  | Pass   |
| Duty Cycle, Tx-sequence, Tx-gap                                                    | ETSI EN 300 328 Sub-clause 4.3.1.3  | N/A    |
| Accumulated Transmit Time, Minimum<br>Frequency Occupation and Hopping<br>Sequence | ETSI EN 300 328 Sub-clause 4.3.1.4  | Pass   |
| Hopping Frequency Separation                                                       | ETSI EN 300 328 Sub-clause 4.3.1.5  | Pass   |
| Medium Utilisation (MU) factor                                                     | ETSI EN 300 328 Sub-clause 4.3.1.6  | N/A    |
| Adaptivity                                                                         | ETSI EN 300 328 Sub-clause 4.3.1.7  | N/A    |
| Occupied Channel Bandwidth                                                         | ETSI EN 300 328 Sub-clause 4.3.1.8  | Pass   |
| Transmitter unwanted emissions in the out-of-<br>band domain                       | ETSI EN 300 328 Sub-clause 4.3.1.9  | Pass   |
| Transmitter unwanted emissions in the spurious domain                              | ETSI EN 300 328 Sub-clause 4.3.1.10 | Pass   |
| Receiver spurious emissions                                                        | ETSI EN 300 328 Sub-clause 4.3.1.11 | Pass   |
| Receiver Blocking                                                                  | ETSI EN 300 328 Sub-clause 4.3.1.12 | N/A    |
| Geo-location capability                                                            | ETSI EN 300 328 Sub-clause 4.3.1.13 | N/A    |

Remark: The measurement uncertainty is not included in the test result.

N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

# 2. <u>SUMMARY</u>

## 2.1. Client Information

| Applicant:    | /onino Electronics Limited                                                        |  |  |
|---------------|-----------------------------------------------------------------------------------|--|--|
| Address:      | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon,<br>Hong Kong |  |  |
| Manufacturer: | Vonino Electronics Limited                                                        |  |  |
| Address:      | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon,<br>Hong Kong |  |  |

## 2.2. Product Description

| Name of EUT          | XAVY L8 / Epic M8                  |  |
|----------------------|------------------------------------|--|
| Trade Mark:          | vonino                             |  |
| Model No.:           | T8S                                |  |
| Listed Model(s):     | -                                  |  |
| Power supply:        | DC 3.7V From internal battery      |  |
| Adapter information: | Model:FJ-SW728L0502000UE           |  |
|                      | Input:AC 100-240V,50/60Hz 0.4A Max |  |
|                      | Output: 5Vd.c., 2000mA             |  |
| Bluetooth            |                                    |  |
| Version:             | Supported BT4.0+EDR                |  |
| Modulation:          | GFSK, π/4QPSK, 8DPSK               |  |
| Operation frequency: | 2402MHz~2480MHz                    |  |
| Channel number: 79   |                                    |  |
| Channel separation:  | 1MHz                               |  |
| Antenna type:        | Internal Antenna                   |  |

## Operation Frequency (bluetooth)

| Channel | Frequency (MHz) |
|---------|-----------------|
| 0       | 2402            |
| 1       | 2403            |
| :       |                 |
| 38      | 2440            |
| 39      | 2441            |
| 40      | 2442            |
| :       | :               |
| 77      | 2479            |
| 78      | 2480            |

| Technical index for Bluetooth |                                                                                                         |                                                            |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Supported type:               | Bluetooth 4.0+EDR                                                                                       |                                                            |  |  |  |
| Operation frequency:          | 2402MHz~2480MHz                                                                                         |                                                            |  |  |  |
| Channel number:               | 79                                                                                                      |                                                            |  |  |  |
| Channel separation:           | 1MHz                                                                                                    |                                                            |  |  |  |
| Modulation:                   | FHSS     Other forms of modulation     GFSK                                                             |                                                            |  |  |  |
| Type of Equipment:            | Stand-alone Combined Equipment                                                                          |                                                            |  |  |  |
|                               | Plug-in radio device     Other                                                                          |                                                            |  |  |  |
| Adaptive / non-adaptive       | non-adaptive Equipment                                                                                  |                                                            |  |  |  |
| equipment                     | <ul> <li>adaptive Equipment without the possibility to switch to a non-adaptive<br/>mode</li> </ul>     | ł                                                          |  |  |  |
|                               | adaptive Equipment which can also operate in a non-adaptive mode                                        |                                                            |  |  |  |
| Operating mode:               | Single Antenna Equipment                                                                                |                                                            |  |  |  |
|                               | Equipment with only 1 antenna                                                                           |                                                            |  |  |  |
|                               | Equipment with 2 diversity antennas but only 1 antenna active a<br>any moment in time                   | t                                                          |  |  |  |
|                               | Smart Antenna Systems with 2 or more antennas, but operating (legacy) mode where only 1antenna is used. | in a                                                       |  |  |  |
|                               | Smart Antenna Systems - Multiple Antennas without beam forming                                          |                                                            |  |  |  |
|                               | Single spatial stream / Standard throughput                                                             |                                                            |  |  |  |
|                               | High Throughput (> 1 spatial stream) using Occupied Channel<br>Bandwidth 1                              |                                                            |  |  |  |
|                               | High Throughput (> 1 spatial stream) using Occupied Channel<br>Bandwidth 2                              |                                                            |  |  |  |
|                               | Smart Antenna Systems - Multiple Antennas with beam forming                                             | nart Antenna Systems - Multiple Antennas with beam forming |  |  |  |
|                               | Single spatial stream / Standard throughput                                                             |                                                            |  |  |  |
|                               | High Throughput (> 1 spatial stream) using Occupied Channel<br>Bandwidth 1                              |                                                            |  |  |  |
|                               | High Throughput (> 1 spatial stream) using Occupied Channel<br>Bandwidth 2                              |                                                            |  |  |  |
| Antenna type:                 | 🛛 Integral Antenna                                                                                      |                                                            |  |  |  |
|                               | Temporary RF connector provided                                                                         |                                                            |  |  |  |
|                               | No temporary RF connector provided                                                                      | No temporary RF connector provided                         |  |  |  |
|                               | Antenna Gain:1.2 dBi                                                                                    | Antenna Gain:1.2 dBi                                       |  |  |  |
|                               | Beamforming gain:0dB                                                                                    |                                                            |  |  |  |
|                               | Dedicated Antennas (equipment with antenna connector)                                                   |                                                            |  |  |  |
|                               | Single power level with corresponding antenna(s)                                                        | ] Single power level with corresponding antenna(s)         |  |  |  |
|                               | Multiple power settings and corresponding antenna(s)                                                    | ] Multiple power settings and corresponding antenna(s)     |  |  |  |
|                               | Number of different Power Levels:                                                                       | Number of different Power Levels:                          |  |  |  |
|                               | Power Level 1: dBm                                                                                      |                                                            |  |  |  |
|                               | Power Level 2: dBm                                                                                      |                                                            |  |  |  |
|                               | Power Level 3: dBm                                                                                      | Power Level 3: dBm                                         |  |  |  |

| Information is provided by the supplier |                                                                                                                                                                                                                                                                              |                                                |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| In case of FHSS modulation:             | <ul> <li>In case of non-Adaptive Frequency Hopping equipment:<br/>The number of Hopping Frequencies:</li> <li>In case of Adaptive Frequency Hopping Equipment:<br/>The maximum number of Hopping Frequencies:</li> <li>The minimum number of Hopping Frequencies:</li> </ul> |                                                |  |  |  |
|                                         | The Dwell Time:                                                                                                                                                                                                                                                              |                                                |  |  |  |
|                                         | The Minimum Channel Occupation Time:                                                                                                                                                                                                                                         |                                                |  |  |  |
| In case of adaptive                     |                                                                                                                                                                                                                                                                              | Time implemented by the equipment:/ ms         |  |  |  |
| equipment:                              | <ul> <li>The equipment has implemented an LBT based DAA mechanism</li> <li>In case of equipment using modulation different from FHSS:</li> <li>The equipment is Frame Based equipment</li> </ul>                                                                             |                                                |  |  |  |
|                                         |                                                                                                                                                                                                                                                                              | t is Load Based equipment                      |  |  |  |
|                                         |                                                                                                                                                                                                                                                                              | can switch dynamically between Frame Based and |  |  |  |
|                                         | The CCA time impler                                                                                                                                                                                                                                                          | mented by the equipment: μs                    |  |  |  |
|                                         | The equipment has i                                                                                                                                                                                                                                                          | mplemented an non-LBT based DAA mechanism      |  |  |  |
|                                         | The equipment can o                                                                                                                                                                                                                                                          | operate in more than one adaptive mode         |  |  |  |
| In case of non-adaptive                 | The maximum RF Output                                                                                                                                                                                                                                                        | Power (e.i.r.p.): dBm                          |  |  |  |
| Equipment                               | The maximum (correspon                                                                                                                                                                                                                                                       | nding) Duty Cycle: %                           |  |  |  |
| The worst case operationa               | I mode for each of the fol                                                                                                                                                                                                                                                   | lowing tests:                                  |  |  |  |
| RF Output Power                         | RF Output Power 7.31 dBm                                                                                                                                                                                                                                                     |                                                |  |  |  |
| Occupied Channel Bandwidt               | h                                                                                                                                                                                                                                                                            | 0.976MHz                                       |  |  |  |
| Transmitter unwanted emiss              | ions in the OOB domain                                                                                                                                                                                                                                                       | Reference to section 4.5                       |  |  |  |
| Transmitter unwanted emiss domain       | ions in the spurious                                                                                                                                                                                                                                                         | Reference to section 4.6                       |  |  |  |
| Receiver spurious emissions             |                                                                                                                                                                                                                                                                              | Reference to section 4.7                       |  |  |  |
| FHSS                                    |                                                                                                                                                                                                                                                                              |                                                |  |  |  |
| Dwell time:                             |                                                                                                                                                                                                                                                                              |                                                |  |  |  |
| Minimum FrequencyC                      | Occupation:                                                                                                                                                                                                                                                                  |                                                |  |  |  |
| Hopping Sequence:                       |                                                                                                                                                                                                                                                                              |                                                |  |  |  |
| Hopping Frequency S                     | eparation                                                                                                                                                                                                                                                                    |                                                |  |  |  |
| Other                                   |                                                                                                                                                                                                                                                                              | Т                                              |  |  |  |
| Power Spectral Densi                    | ty:                                                                                                                                                                                                                                                                          |                                                |  |  |  |
|                                         | Adaptive equipment                                                                                                                                                                                                                                                           |                                                |  |  |  |
| Adaptivity:                             |                                                                                                                                                                                                                                                                              | -                                              |  |  |  |
|                                         | Receiver Blocking: -                                                                                                                                                                                                                                                         |                                                |  |  |  |
| Non-adaptiveequipme                     | 301                                                                                                                                                                                                                                                                          | 1                                              |  |  |  |
| Duty cycle:                             |                                                                                                                                                                                                                                                                              |                                                |  |  |  |
| Tx-Sequence:                            |                                                                                                                                                                                                                                                                              |                                                |  |  |  |
| Tx-gap:<br>Medium Utilisation:          |                                                                                                                                                                                                                                                                              |                                                |  |  |  |

## 2.3. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continous transmitting and receiving mode for testing.

## 2.4. EUT configuration

## The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 · supplied by the lab

 Length (m) :
 /

 Shield :
 /

 Detachable :
 /

 Manufacturer :
 /

 Model No. :
 /

## 2.5. Modifications

No modifications were implemented to meet testing criteria.

# 3. <u>TEST ENVIRONMENT</u>

## 3.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

## 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

## CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

## A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

## FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

## IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

## ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

## VCCI

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

#### DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and followups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

## 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

|             | Normal Temperature/Tnor: | 25°C     |
|-------------|--------------------------|----------|
| Temperature | High Temperature/Thigh:  | 55°C     |
|             | Low Temperature/Tlow:    | -20°C    |
|             | Normal Voltage           | DC 3.70V |
| Voltage     | High Voltage             | DC 4.25V |
|             | Low Voltage              | DC 3.50V |
| Other       | lative Humidity          | 55 %     |
| Other       | Air Pressure             | 989 hPa  |

## 3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics;Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

| Test Items                                     | Measurement Uncertainty | Notes |
|------------------------------------------------|-------------------------|-------|
| Frequency error                                | 25 Hz                   | (1)   |
| Frequency range                                | 25 Hz                   | (1)   |
| Transmitter power conducted                    | 0.57 dB                 | (1)   |
| Transmitter power Radiated                     | 2.20 dB                 | (1)   |
| Adjacent and alternate channel power Conducted | 1.20 dB                 | (1)   |
| Conducted spurious emission                    | 1.60 dB                 | (1)   |
| Radiated spurious emission                     | 2.20 dB                 | (1)   |
| Intermodulation attenuation                    | 1.00 dB                 | (1)   |
| Maximum useable receiver sensitivity           | 2.80 dB                 | (1)   |
| Co-channel rejection                           | 2.80 dB                 | (1)   |
| Adjacent channel selectivity                   | 2.80 dB                 | (1)   |
| Spurious response rejection                    | 2.80 dB                 | (1)   |
| Intermodulation response rejection             | 2.80 dB                 | (1)   |
| Blcking or desensitization                     | 2.80 dB                 | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

# 3.5. Equipments Used during the Test

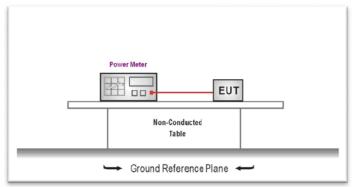
| TS899 | TS8997                       |              |           |            |           |           |
|-------|------------------------------|--------------|-----------|------------|-----------|-----------|
| Item  | Test Equipment               | Manufacturer | Model No. | Serial No. | Last Cal. | Next Cal. |
| 1     | Signal generator             | R&S          | SMB100A   | 177956     | 11/3/2015 | 11/2/2016 |
| 2     | Signal and spectrum analyzer | R&S          | FSV40     | 100048     | 11/3/2015 | 11/2/2016 |
| 3     | OSP                          | R&S          | OSP120    | 101317     | 11/3/2015 | 11/2/2016 |
| 4     | OSP                          | R&S          | OSP-B157  | 100890     | 11/3/2015 | 11/2/2016 |
| 5     | Climate Chamber              | ESPEC        | EL-10KA   | 05107008   | 11/3/2015 | 11/2/2016 |
| 6     | POWER SUPPLY                 | R&S          | NGMO1     | 1504.8420  | 11/3/2015 | 11/2/2016 |
| 7     | Vector signal generator      | R&S          | SMBV100A  | 260790     | 11/3/2015 | 11/2/2016 |

The Cal. Interval was one year

# 4. TEST CONDITIONS AND RESULTS

## 4.1. RF output power

## <u>LIMIT</u>


## ETSI EN 300 328 Sub-clause 4.3.1.2.3

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.

## **TEST CONFIGURATION**



## TEST PROCEDURE

**Refer to ETSI EN 300 328 Sub-clause 5.3.2.2** Power Meter: sample speed 1MS/s Test bursts: 600.

## TEST RESULTS

|                                | Hopping Mode |            |            |             |        |  |  |
|--------------------------------|--------------|------------|------------|-------------|--------|--|--|
| Test con                       | ditions      |            |            |             |        |  |  |
| Temperature<br>(℃) Voltage (V) |              | Modulation | EIRP (dBm) | Limit (dBm) | Result |  |  |
|                                |              | GFSK       | 7.17       |             |        |  |  |
| Tnor=25                        | 3.70         | π/4QPSK    | 4.15       |             |        |  |  |
|                                |              | 8DPSK      | 3.25       |             |        |  |  |
|                                |              | GFSK       | 7.08       |             |        |  |  |
|                                | 3.50         | π/4QPSK    | 4.07       |             |        |  |  |
|                                |              | 8DPSK      | 3.15       |             |        |  |  |
| Tlow=-20                       | 4.25         | GFSK       | 7.31       |             |        |  |  |
|                                |              | π/4QPSK    | 4.23       | 20.00       | Pass   |  |  |
|                                |              | 8DPSK      | 3.34       |             |        |  |  |
|                                |              | GFSK       | 7.07       |             |        |  |  |
| Thigh=+55                      | 3.50         | π/4QPSK    | 4.07       |             |        |  |  |
|                                |              | 8DPSK      | 3.13       |             |        |  |  |
|                                | 4.25         | GFSK       | 7.24       | 7           |        |  |  |
|                                |              | π/4QPSK    | 4.25       |             |        |  |  |
|                                |              | 8DPSK      | 3.36       |             |        |  |  |

Note :

1. Measured Power include the cable loss.

# 4.2. Accumulated Transmit Time, Minimum Frequency Occupation and Hopping Sequence

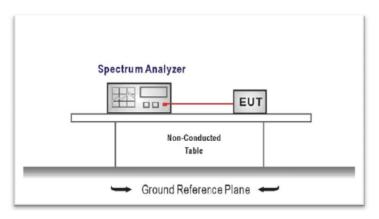
#### <u>LIMIT</u>

#### ETSI EN 300 328 Sub-clause 4.3.1.4.3

-Adaptive Frequency Hopping systems shall be capable of operating over a minimum of 70 % of the band specified in

clause 1.

-The maximum accumulated dwell time on any hopping frequency shall be 400 ms within any period of 400 ms


multiplied by the minimum number of hopping frequencies (N) that have to be used.

The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the

-minimum Hopping Frequency Separation in MHz, whichever is the greater.

The Minimum Frequency Occupation Time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and the number of hopping frequencies in use

## **TEST CONFIGURATION**



#### TEST PROCEDURE

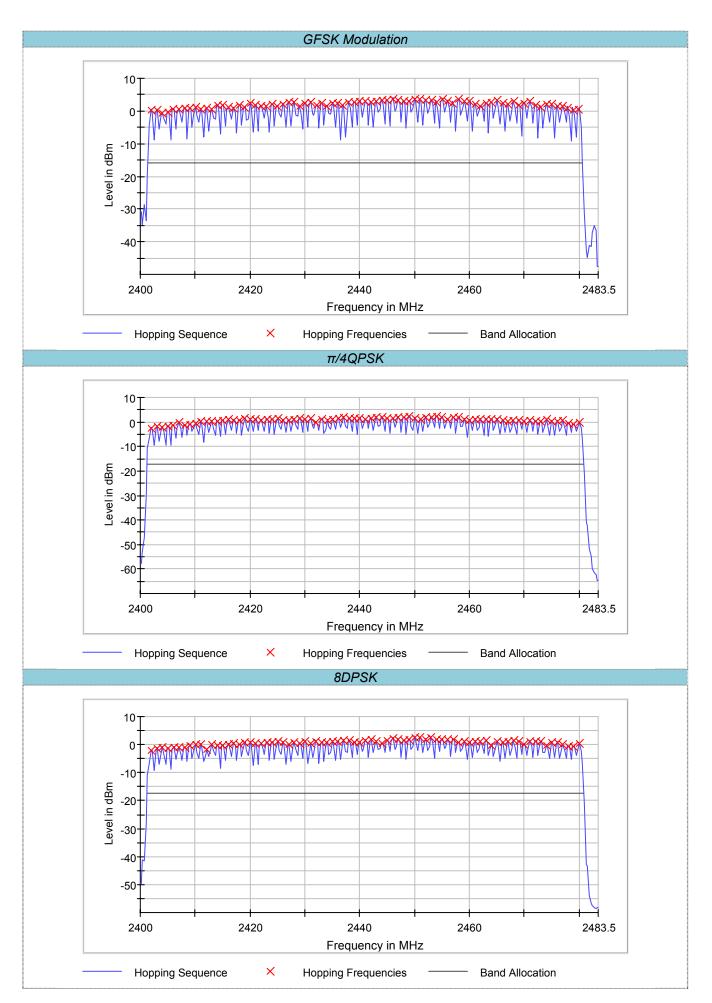
1.Please refer to ETSI EN 300 328 Sub-clause5.1 for the test conditions.

2.Please refer to ETSI EN 300 328 Sub-clause 5.3.4.2.1 for the measurement method.

## TEST RESULTS

## • Accumulated Transmit Time

| Modulation | Channel | Packet | Accumulated Transmit Time (ms) | Limit<br>(second) | Measurement<br>Time(ms) | Result |
|------------|---------|--------|--------------------------------|-------------------|-------------------------|--------|
| GFSK       | 0       | DH5    | 33.00                          | 0.40              | 6000.00                 | Pass   |
| GFSK       | 78      | DHC    | 21.20                          | 0.40              | 6000.00                 |        |
| π/4QPSK    | 0       | 2DH5   | 71.20                          | 0.40              | 6000.00                 | Pass   |
| 11/4QF3K   | 78      | 2005   | 71.80                          | 0.40              | 6000.00                 |        |
| 2005V      | 0       | 2045   | 34.60                          | 0.40              | 6000.00                 | Dees   |
| 8DPSK 78   | 78      | 3DH5   | 29.80                          | 0.40              | 6000.00                 | Pass   |


## • Frequency occupation

| Modulation | Channel | Packet | Frequency Occupation(ms) | Limit<br>(ms) | Measurement<br>Time(ms) | Result  |
|------------|---------|--------|--------------------------|---------------|-------------------------|---------|
| GFSK       | 0       | DH5    | 27.02                    | >0            | 4740                    | Pass    |
| GFSK       | 78      | DHC    | 24.02                    | -0            | 4740                    | F a 88  |
|            | 0       | 2045   | 46.61                    | >0            | 4740                    | Deee    |
| π/4QPSK    | 78      | 2DH5   | 61.15                    | >0            | 4740                    | Pass    |
| 8DPSK      | 0       | 3DH5   | 18.17                    | >0            | 4740                    | Pass    |
| ODF SK     | 78      | 3003   | 17.06                    | -0            | 4740                    | F d 5 5 |

## Hopping Sequence

| Modulation | Number of Hopping<br>Frequencies | Limit | Band Allocation(%) | Limit Band<br>Allocation(%) | Result |
|------------|----------------------------------|-------|--------------------|-----------------------------|--------|
| GFSK       | 79                               | ≥15   | 94.88              |                             |        |
| π/4QPSK    | 79                               | ≥15   | 95.36              | ≥70%                        | Pass   |
| 8DPSK      | 79                               | ≥15   | 95.36              |                             |        |

Test plot as follows:



## 4.3. Hopping Frequency Separation

## <u>LIMIT</u>

#### ETSI EN 300 328 Sub-clause 4.3.1.5.3

- The minimum Hopping Frequency Separation shall be equal to Occupied Channel Bandwidth (see clause 4.3.1.7) of a single hop, with a minimum separation of 100 kHz.

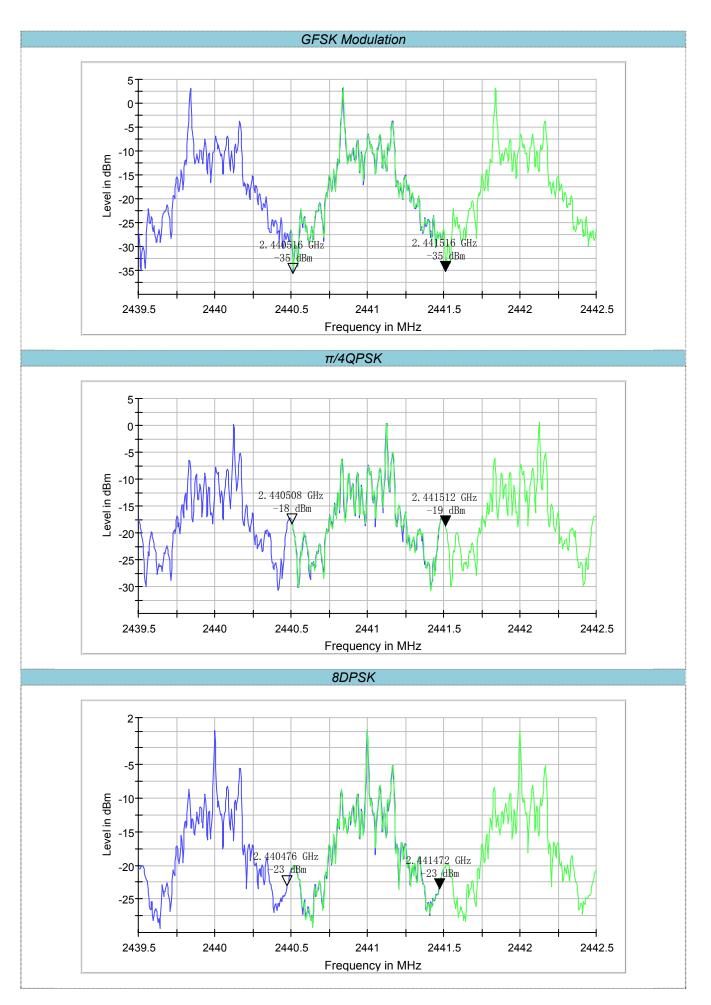
## TEST CONFIGURATION



#### TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.5.2.1 for the measurement method.

Connect the UUT to the spectrum analyzer and use the following settings:


| Centre Frequency | Equal to the hopping frequency being investigated                         |
|------------------|---------------------------------------------------------------------------|
| Span             | Sufficient to see the complete power envelope of both hopping frequencies |
| RBW              | 1 % of the Span (30kHz)                                                   |
| VBW              | ≥ RBW (100KHz)                                                            |
| Detector         | RMS                                                                       |
| Trace            | Max hold                                                                  |
| Sweep time       | Auto                                                                      |

#### TEST RESULT

#### Channel separation

| Modulation | Hopping Frequency<br>Separation(MHz) | Limit(MHz) | Result |
|------------|--------------------------------------|------------|--------|
| GFSK       | 1.000                                | >= 0.10    | Pass   |
| π/4QPSK    | 1.000                                | >= 0.10    | Pass   |
| 8DPSK      | 1.000                                | >= 0.10    | Pass   |

#### Test plot as follows:



## 4.4. Occupied Channel Bandwidth

#### <u>LIMIT</u>

#### ETSI EN 300 328 Sub-clause 4.3.1.8.3

- The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band given in clause 1. For non-adaptive Frequency Hopping equipment with e.i.r.p greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the value declared by the supplier. This declared value shall not be greater than 5 MHz.

## **TEST CONFIGURATION**

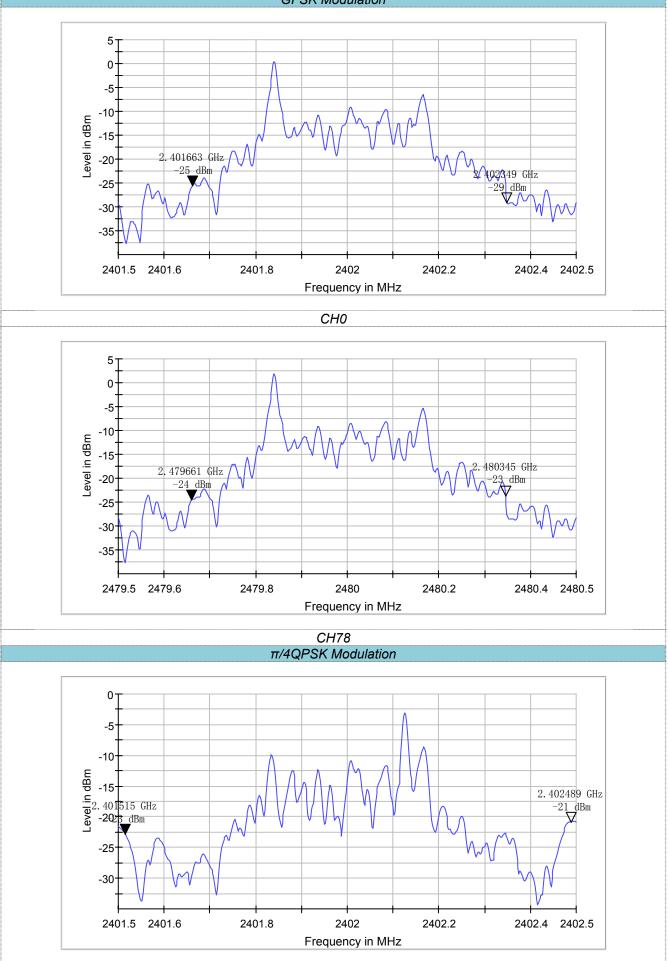


#### TEST PROCEDURE

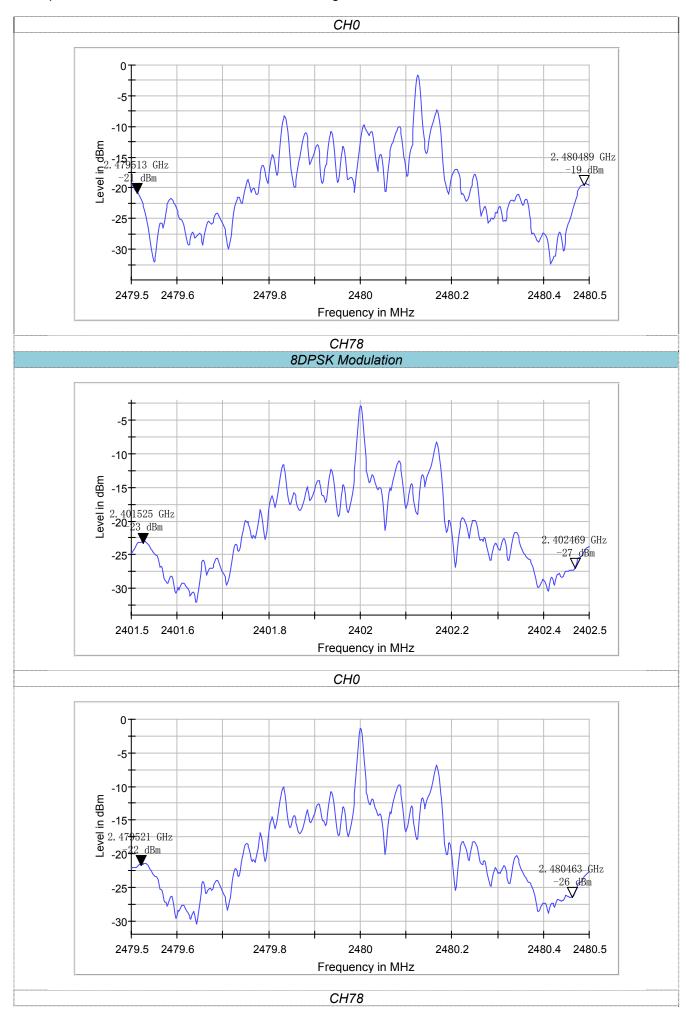
- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.8.2.1 for the measurement method.

Connect the UUT to the spectrum analyzer and use the following settings:

| Centre Frequency | The centre frequency of the channel under test |
|------------------|------------------------------------------------|
| Span             | 2× Occupied Channel Bandwidth                  |
| RBW              | ~1 % of the Span (30kHz)                       |
| VBW              | ≥ RBW (100KHz)                                 |
| Detector         | RMS                                            |
| Trace            | Max hold                                       |


#### TEST RESULT

| Modulation | Channel | Occupied Channel Bandwidth<br>(MHz) | Result |
|------------|---------|-------------------------------------|--------|
| GFSK       | CH0     | 0.686                               |        |
| GrSK       | CH78    | 0.684                               |        |
|            | CH0     | 0.974                               | Pass   |
| π/4QPSK    | CH78    | 0.976                               | FdSS   |
| 8DPSK      | CH0     | 0.944                               |        |
| OUPSK      | CH78    | 0.942                               |        |

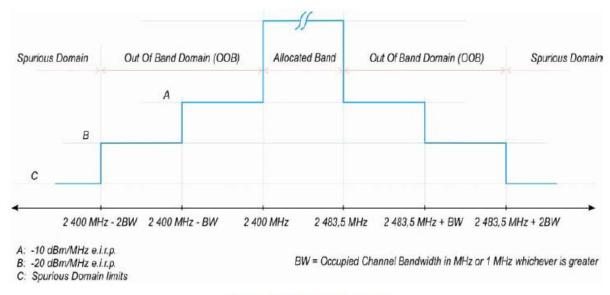

Occupied Channel Bandwidth

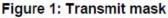
## Test plot as follows:

GFSK Modulation



Report No: TRE1603019106





## 4.5. Transmitter unwanted emissions in the out-of-band domain

#### **LIMIT**

#### ETSI EN 300 328 Sub-clause 4.3.1.9.3

- The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed thevalues provided by the mask in figure 1.

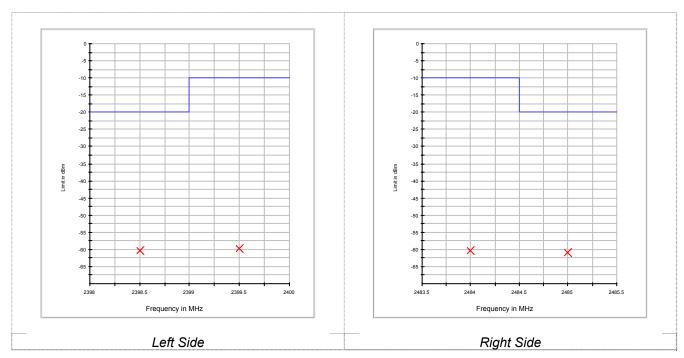




# Spectrum Analyzer EUT Non-Conducted Table Ground Reference Plane

## TEST CONFIGURATION

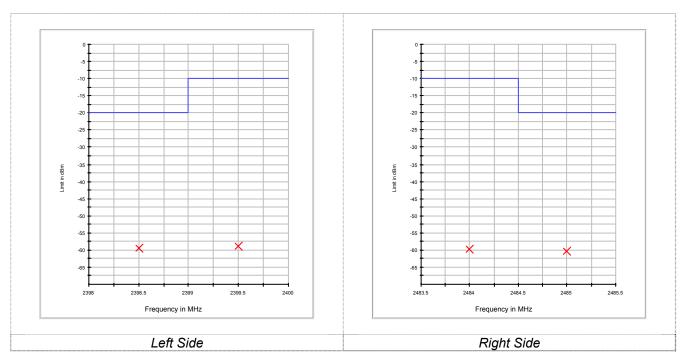
#### TEST PROCEDURE


- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.9.2 for the measurement method.

Connect the UUT to the spectrum analyzer and use the following settings: Centre Frequency Equal to the frequency being investigated

| John o Froquono,                | Equal to the hequeiney being i       |
|---------------------------------|--------------------------------------|
| Span                            | 0Hz                                  |
| RBW                             | 1MHz                                 |
| /BW                             | 3MHz                                 |
| Detector                        | RMS                                  |
| race                            | Clear / Write                        |
| rigger Mode                     | Video trigger                        |
| RBW<br>/BW<br>Detector<br>Trace | 1MHz<br>3MHz<br>RMS<br>Clear / Write |

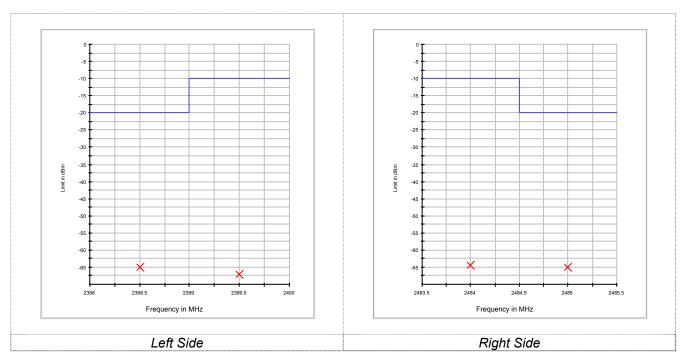
## TEST RESULT


|                    |                | G           | FSK Modulation |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|----------------|-------------|----------------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test cond          | litions        | Frequency r | ange (MHz)     |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Temperature<br>(℃) | Voltage<br>(V) | Start       | Stop           | Level (dBm) | Limit (dBm) | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                | 2400-20BW   | 2400-OBW       | -60.02      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trac # 25          | 3.70           | 2400-OBW    | 2400           | -59.87      | <-10        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tnor=25            | 3.70           | 2484        | 2484+OBW       | -60.12      | <-10        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                | 2484+OBW    | 2484+20BW      | -61.25      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                | 2400-20BW   | 2400-OBW       | -60.31      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 3.50           | 2400-OBW    | 2400           | -59.13      | <-10        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 3.50           | 2484        | 2484+OBW       | -60.95      | <-10        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                | 2484+OBW    | 2484+2OBW      | -62.08      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tlow=-20           |                | 2400-20BW   | 2400-OBW       | -61.40      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 4.05           | 2400-OBW    | 2400           | -60.13      | <-10        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 4.25           | 2484        | 2484+OBW       | -60.15      | <-10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                | 2484+OBW    | 2484+2OBW      | -61.34      | <-20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                | 2400-20BW   | 2400-OBW       | -61.57      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 2.50           | 2400-OBW    | 2400           | -60.61      | <-10        | 20         Pass           10         Pass           10         Pass           10         Pass           20         Pass           20         Pass           20         Pass           20         Pass           20         Pass           20         Pass           10         Pass           20         Pass           20 |
|                    | 3.50           | 2484        | 2484+OBW       | -59.60      | <-10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                | 2484+OBW    | 2484+20BW      | -62.05      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thigh=+55          |                | 2400-20BW   | 2400-OBW       | -60.72      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 4.05           | 2400-OBW    | 2400           | -61.24      | <-10        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | 4.25           | 2484        | 2484+OBW       | -62.51      | <-10        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                | 2484+OBW    | 2484+2OBW      | -60.63      | <-20        | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



Note:

- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition


|                    |                | π/40         | QPSK Modulation |             |             |                                                                                                                                                                          |
|--------------------|----------------|--------------|-----------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test cond          | litions        | Frequency ra | ange (MHz)      |             |             |                                                                                                                                                                          |
| Temperature<br>(℃) | Voltage<br>(V) | Start        | Stop            | Level (dBm) | Limit (dBm) | Result                                                                                                                                                                   |
|                    |                | 2400-2OBW    | 2400-OBW        | -59.89      | <-20        | Pass                                                                                                                                                                     |
| Tnor=25            | 3.70           | 2400-OBW     | 2400            | -58.97      | <-10        | Pass                                                                                                                                                                     |
| 11101=25           | 3.70           | 2484         | 2484+OBW        | -60.02      | <-10        | Pass                                                                                                                                                                     |
|                    |                | 2484+OBW     | 2484+2OBW       | -60.05      | <-20        | Pass<br>Pass                                                                                                                                                             |
|                    |                | 2400-2OBW    | 2400-OBW        | -60.18      | <-20        | Pass                                                                                                                                                                     |
|                    | 2.50           | 2400-OBW     | 2400            | -58.23      | <-10        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                             |
|                    | 3.50           | 2484         | 2484+OBW        | -60.85      | <-10        |                                                                                                                                                                          |
|                    |                | 2484+OBW     | 2484+2OBW       | -60.88      | <-20        |                                                                                                                                                                          |
| Tlow=-20           |                | 2400-20BW    | 2400-OBW        | -61.27      | <-20        | Pass                                                                                                                                                                     |
|                    | 4.05           | 2400-OBW     | 2400            | -59.23      | <-10        | Pass                                                                                                                                                                     |
|                    | 4.25           | 2484         | 2484+OBW        | -60.05      | <-10        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                             |
|                    |                | 2484+OBW     | 2484+2OBW       | -60.14      | <-20        |                                                                                                                                                                          |
|                    |                | 2400-2OBW    | 2400-OBW        | -61.44      | <-20        | Pass                                                                                                                                                                     |
|                    | 2.50           | 2400-OBW     | 2400            | -59.71      | <-10        | PassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPass |
|                    | 3.50           | 2484         | 2484+OBW        | -59.50      | <-10        |                                                                                                                                                                          |
| Think-155          |                | 2484+OBW     | 2484+2OBW       | -60.85      | <-20        | Pass                                                                                                                                                                     |
| Thigh=+55          |                | 2400-2OBW    | 2400-OBW        | -60.59      | <-20        | Pass                                                                                                                                                                     |
|                    | 4.05           | 2400-OBW     | 2400            | -60.34      | <-10        | Pass                                                                                                                                                                     |
|                    | 4.25           | 2484         | 2484+OBW        | -61.31      | <-10        | Pass                                                                                                                                                                     |
|                    |                | 2484+OBW     | 2484+2OBW       | -60.50      | <-20        | Pass                                                                                                                                                                     |



Note:

- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition

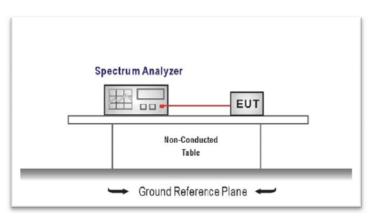
|                    |                | 8D           | PSK Modulation |             |             |                                                                                                                                                                          |
|--------------------|----------------|--------------|----------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test cond          | litions        | Frequency ra | ange (MHz)     |             |             |                                                                                                                                                                          |
| Temperature<br>(℃) | Voltage<br>(V) | Start        | Stop           | Level (dBm) | Limit (dBm) | Result                                                                                                                                                                   |
|                    |                | 2400-20BW    | 2400-OBW       | -65.50      | <-20        | Pass                                                                                                                                                                     |
| Tnor=25            | 3.70           | 2400-OBW     | 2400           | -67.50      | <-10        | Pass                                                                                                                                                                     |
| 11101=25           | 3.70           | 2484         | 2484+OBW       | -64.95      | <-10        | Pass                                                                                                                                                                     |
|                    |                | 2484+OBW     | 2484+2OBW      | -65.00      | <-20        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                             |
|                    |                | 2400-20BW    | 2400-OBW       | -65.95      | <-20        | Pass                                                                                                                                                                     |
|                    | 2.50           | 2400-OBW     | 2400           | -67.26      | <-10        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                             |
|                    | 3.50           | 2484         | 2484+OBW       | -64.50      | <-10        |                                                                                                                                                                          |
| Tlow=-20           |                | 2484+OBW     | 2484+2OBW      | -64.29      | <-20        |                                                                                                                                                                          |
| 110w=-20           |                | 2400-20BW    | 2400-OBW       | -66.61      | <-20        | Pass                                                                                                                                                                     |
|                    | 4.05           | 2400-OBW     | 2400           | -66.76      | <-10        | Pass                                                                                                                                                                     |
|                    | 4.25           | 2484         | 2484+OBW       | -64.10      | <-10        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                             |
|                    |                | 2484+OBW     | 2484+2OBW      | -64.60      | <-20        |                                                                                                                                                                          |
|                    |                | 2400-20BW    | 2400-OBW       | -66.18      | <-20        | Pass                                                                                                                                                                     |
|                    | 2.50           | 2400-OBW     | 2400           | -66.65      | <-10        | PassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPassPass |
|                    | 3.50           | 2484         | 2484+OBW       | -63.76      | <-10        |                                                                                                                                                                          |
| Think-155          |                | 2484+OBW     | 2484+2OBW      | -64.11      | <-20        | Pass                                                                                                                                                                     |
| Thigh=+55          |                | 2400-20BW    | 2400-OBW       | -66.53      | <-20        | Pass                                                                                                                                                                     |
|                    | 4.05           | 2400-OBW     | 2400           | -66.44      | <-10        | Pass                                                                                                                                                                     |
|                    | 4.25           | 2484         | 2484+OBW       | -64.92      | <-10        | Pass                                                                                                                                                                     |
|                    |                | 2484+OBW     | 2484+2OBW      | -66.39      | <-20        | Pass                                                                                                                                                                     |



Note:

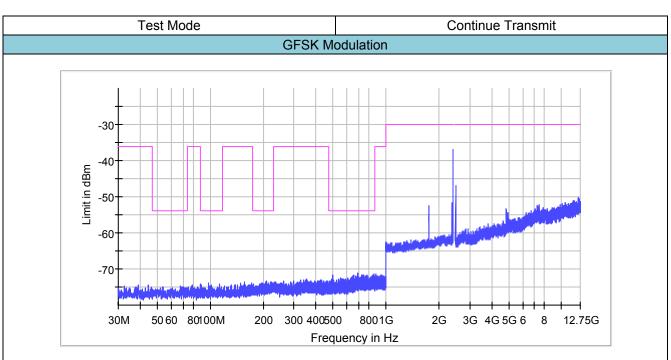
- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition

## 4.6. Transmitter unwanted emissions in the spurious domain


## <u>LIMIT</u>

#### ETSI EN 300 328 Sub-clause 4.3.1.10.3

- The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 1.


|                     | Maximum power    |                    |
|---------------------|------------------|--------------------|
| Frequency Range     | e.r.p.(.≤1 GHz)  | Limit when Standby |
|                     | e.i.r.p.(>1 GHz) |                    |
| 30 MHz to 47 MHz    | -36 dBm          | 100 KHz            |
| 47 MHz to 74 MHz    | -54 dBm          | 100 KHz            |
| 74MHz to 87.5 MHz   | -36 dBm          | 100 KHz            |
| 87.5 MHz to 118 MHz | -54 dBm          | 100 KHz            |
| 118 MHz to 174 MHz  | -36 dBm          | 100 KHz            |
| 174 MHz to 230 MHz  | -54 dBm          | 100 KHz            |
| 230 MHz to 470 MHz  | -36 dBm          | 100 KHz            |
| 470 MHz to 862 MHz  | -54 dBm          | 100 KHz            |
| 862 MHz to 1 GHz    | -36 dBm          | 100 KHz            |
| 1 GHz to 12.75 GHz  | -30 dBm          | 1 MHz              |

#### **TEST CONFIGURATION**



## TEST PROCEDURE

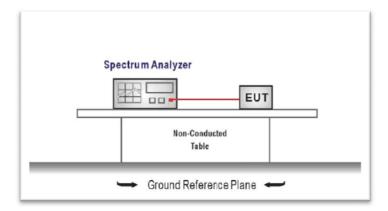
- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- Please refer to ETSI EN 300 328 Sub-clause 5.3.10.2 for the measurement method. Resolution Bandwidth: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz) Video Bandwidth: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz) Detector: Peak for prescan/RMS for emission retest
   TEST RESULTS



Note: The radiated spurious are performed the each test Modulation mode, the datum recorded is the worst case for all the mode at GFSK Modulation

## 4.7. Receiver spurious emissions

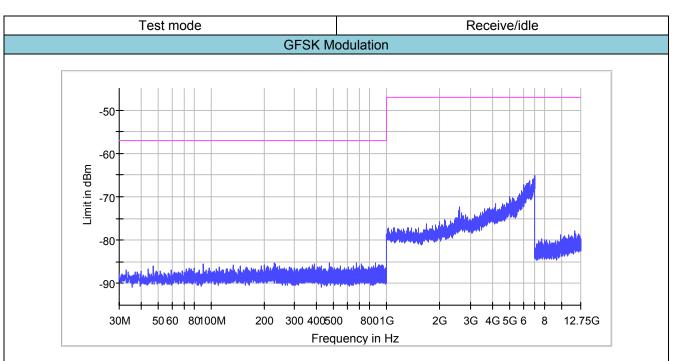
## <u>LIMIT</u>


#### ETSI EN 300 328 Sub-clause 4.3.1.11.3

The spurious emissions of the receiver shall not exceed the values given in table 2

Table 2: spurious emission limits for receivers

| Frequency          | Maximum power, e.r.p. | Measurement bandwidth |
|--------------------|-----------------------|-----------------------|
| 30 MHz to 1 GHz    | -57 dBm               | 100 KHz               |
| 1 GHz to 12.75 GHz | -47 dBm               | 1 MHz                 |


## **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Refer to ETSI EN 300 328 Sub-clause 5.3.11.2 for the measurement method.
- Resolution Bandwidth:100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)Video Bandwidth:300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)Detector:Peak for prescan/RMS for emission retest

## TEST RESULTS



Note: The radiated spurious are performed the each test Modulation mode, the datum recorded is the worst case for all the mode at GFSK Modulation

# 5. Test Setup Photos of the EUT



# 6. External and Internal Photos of the EUT

Reference to the test report No. TRE1603019101

.....End of Report.....