



| TC                                                   |                                                                                                                                                                                                  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TEST REPORT                                          |                                                                                                                                                                                                  |  |  |  |  |
|                                                      | For WIFI                                                                                                                                                                                         |  |  |  |  |
| Report Reference No:                                 | TRE1603019104         R/C: 14043                                                                                                                                                                 |  |  |  |  |
| Applicant's name:                                    | Vonino Electronics Limited                                                                                                                                                                       |  |  |  |  |
| Address                                              | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha<br>Tsui, Kowloon, Hong Kong                                                                                                                |  |  |  |  |
| Manufacturer                                         | Vonino Electronics Limited                                                                                                                                                                       |  |  |  |  |
| Address:                                             | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha<br>Tsui, Kowloon, Hong Kong                                                                                                                |  |  |  |  |
| Test item description:                               | XAVY L8 / Epic M8                                                                                                                                                                                |  |  |  |  |
| Trade Mark                                           | vonino                                                                                                                                                                                           |  |  |  |  |
| Model/Type reference                                 | T8S                                                                                                                                                                                              |  |  |  |  |
| Listed Model(s)                                      |                                                                                                                                                                                                  |  |  |  |  |
| Standard:                                            | ETSI EN 300 328 V1.9.1: 2015-02                                                                                                                                                                  |  |  |  |  |
| Date of receipt of test sample                       | Mar 29, 2016                                                                                                                                                                                     |  |  |  |  |
| Date of testing                                      | Mar 30, 2016- Apr 20, 2016                                                                                                                                                                       |  |  |  |  |
| Date of issue                                        | Apr 20, 2016                                                                                                                                                                                     |  |  |  |  |
| Result:                                              | PASS                                                                                                                                                                                             |  |  |  |  |
| Compiled by ( position+printed name+signature):      | File administrators Shayne Zhu                                                                                                                                                                   |  |  |  |  |
| Supervised by<br>( position+printed name+signature): | Project Engineer Lion Cai                                                                                                                                                                        |  |  |  |  |
| Approved by<br>( position+printed name+signature):   | Project Engineer Lion Cai RF Manager Hans Hu                                                                                                                                                     |  |  |  |  |
| Tooting Loboratory Name                              | Shenzhen Huatongwei International Inspection Co., Ltd                                                                                                                                            |  |  |  |  |
| Testing Laboratory Name :                            |                                                                                                                                                                                                  |  |  |  |  |
| Address:                                             | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,<br>Tianliao, Gongming, Shenzhen, China                                                                                                  |  |  |  |  |
| Shenzhen Huatongwei International I                  | nspection Co., Ltd. All rights reserved.                                                                                                                                                         |  |  |  |  |
| Shenzhen Huatongwei International Insp               | vhole or in part for non-commercial purposes as long as the pection Co., Ltd is acknowledged as copyright owner and source nternational Inspection Co., Ltd takes no responsibility for and will |  |  |  |  |

Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# Contents

| <u>1.</u>    | TEST STANDARDS AND TEST DESCRIPTION                      | 3      |
|--------------|----------------------------------------------------------|--------|
| 1.1.<br>1.2. | Test Standards<br>Test Description                       | 3<br>3 |
| <u>2.</u>    | SUMMARY                                                  | 4      |
| 2.1.         | Client Information                                       | 4      |
| 2.2.         | Product Description                                      | 4      |
| 2.3.         | EUT operation mode                                       | 7      |
| 2.4.<br>2.5. | EUT configuration<br>Modifications                       | 7<br>7 |
| <u>3.</u>    | TEST ENVIRONMENT                                         | 8      |
| 3.1.         | Address of the test laboratory                           | 8      |
| 3.2.         | Test Facility                                            | 8      |
| 3.3.         | Environmental conditions                                 | 9      |
| 3.4.         | Statement of the measurement uncertainty                 | 9      |
| 3.5.         | Equipments Used during the Test                          | 10     |
| <u>4.</u>    | TEST CONDITIONS AND RESULTS                              | 11     |
| 4.1.         | Maximum transmit power                                   | 11     |
| 4.2.         | Maximum e.i.r.p. spectral density                        | 13     |
| 4.3.         | Adaptivity and Recever blocking                          | 18     |
| 4.4.         | Occpied Channel Bandidth                                 | 21     |
| 4.5.         | Transmitter unwanted emissions in the out-of-band domain | 26     |
| 4.6.         | Transmitter spurious emissions                           | 31     |
| 4.7.         | Receiver spurious emissions                              | 33     |
| <u>5.</u>    | TEST SETUP PHOTOS OF THE EUT                             | 35     |
| <u>6.</u>    | EXTERNAL AND INTERNAL PHOTOS OF THE EUT                  | 36     |

# 1. Test standards and Test description

#### 1.1. Test Standards

The tests were performed according to following standards:

ETSI EN 300 328 V1.9.1(2015-02) –Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive

# 1.2. Test Description

| Test item                                                    | Standards requirement               | Result |
|--------------------------------------------------------------|-------------------------------------|--------|
| Maximum transmit power                                       | ETSI EN 300 328 Sub-clause 4.3.2.2  | Pass   |
| Power Spectral Density                                       | ETSI EN 300 328 Sub-clause 4.3.2.3  | Pass   |
| Duty Cycle, Tx-sequence, Tx-gap                              | ETSI EN 300 328 Sub-clause 4.3.2.4  | N/A    |
| Medium Utilisation (MU) factor                               | ETSI EN 300 328 Sub-clause 4.3.2.5  | N/A    |
| Adaptivity                                                   | ETSI EN 300 328 Sub-clause 4.3.2.6  | N/A    |
| Occupied Channel Bandwidth                                   | ETSI EN 300 328 Sub-clause 4.3.2.7  | Pass   |
| Transmitter unwanted emissions in the out-of-<br>band domain | ETSI EN 300 328 Sub-clause 4.3.2.8  | Pass   |
| Transmitter unwanted emissions in the spurious domain        | ETSI EN 300 328 Sub-clause 4.3.2.9  | Pass   |
| Receiver spurious emissions                                  | ETSI EN 300 328 Sub-clause 4.3.2.10 | Pass   |
| Receiver Blocking                                            | ETSI EN 300 328 Sub-clause 4.3.2.11 | N/A    |
| Geo-location capability                                      | ETSI EN 300 328 Sub-clause 4.3.2.12 | N/A    |

Remark: The measurement uncertainty is not included in the test result.

N/A is an abbreviation for Not Applicable and means this test item is not applicable for this device according to the technology characteristic of device.

# 2. <u>Summary</u>

# 2.1. Client Information

| Applicant:    | Vonino Electronics Limited                                                        |
|---------------|-----------------------------------------------------------------------------------|
| Address:      | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon,<br>Hong Kong |
| Manufacturer: | Vonino Electronics Limited                                                        |
| Address:      | Miramar Tower 10F - no1010, 132 Nathan Road, Tsim Sha Tsui, Kowloon,<br>Hong Kong |

# 2.2. Product Description

| Name of EUT           | XAVY L8 / Epic M8                                                              |
|-----------------------|--------------------------------------------------------------------------------|
| Trade Mark:           | vonino                                                                         |
| Model/Type reference: | T8S                                                                            |
| Listed Model(s):      | -                                                                              |
| Power supply:         | DC 3.7V From internal battery                                                  |
| Adapter information:  | Model:FJ-SW728L0502000UE<br>Input:AC 100-240V,50/60Hz 0.4A Max                 |
|                       | Output: 5Vd.c., 2000mA                                                         |
| WIFI                  |                                                                                |
| Supported type:       | 802.11b/802.11g/802.11n(H20)/802.11n(H40)                                      |
| Modulation:           | 802.11b: DSSS<br>802.11g/802.11n(H20)/802.11n(H40):OFDM                        |
| Operation frequency:  | 802.11b/802.11g/802.11n(H20): 2412MHz~2472MHz<br>802.11n(H40): 2422MHz~2462MHz |
| Channel number:       | 802.11b/802.11g/802.11n(H20): 13<br>802.11n(H40): 9                            |
| Channel separation:   | 5MHz                                                                           |
| Antenna type:         | Internal Antenna                                                               |

# Operation Frequency List:

| 802.11b/ | g/n(H20)        | 802.11n(H40) |                 |  |
|----------|-----------------|--------------|-----------------|--|
| Channel  | Frequency (MHz) | Channel      | Frequency (MHz) |  |
| 01       | 2412            | 01           |                 |  |
| 02       | 2417            | 02           |                 |  |
| 03       | 2422            | 03           | 2422            |  |
| :        | :               | :            | :               |  |
| 07       | 2442            | 07           | 2442            |  |
| :        | :               | :            | :               |  |
| 11       | 2462            | 11           | 2462            |  |
| 12       | 2465            | 12           |                 |  |
| 13       | 2472            | 13           |                 |  |

| Technical index for WIFI |                 |                                                                       |                                                     |                             |                                                       |  |
|--------------------------|-----------------|-----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------------------------------|--|
| Supported type:          | WIFI            | WIFI                                                                  |                                                     |                             |                                                       |  |
| Operation frequency:     | 2412MHz~2472MHz |                                                                       |                                                     |                             |                                                       |  |
| Channel number:          | 13              |                                                                       |                                                     |                             |                                                       |  |
| Channel separation:      | 5MHz            |                                                                       |                                                     |                             |                                                       |  |
| Modulation:              |                 | FHS                                                                   | S                                                   |                             | DSSS                                                  |  |
| Type of Equipment:       | $\boxtimes$     | Star                                                                  | nd-alone                                            |                             | Combined Equipment                                    |  |
|                          |                 | Plug                                                                  | j-in radio device                                   |                             | Other                                                 |  |
| Adaptive / non-          |                 | non-                                                                  | adaptive Equipment                                  |                             |                                                       |  |
| adaptive equipment       |                 | adaj<br>mod                                                           |                                                     | oossi                       | ibility to switch to a non-adaptive                   |  |
|                          | $\boxtimes$     | ada                                                                   | otive Equipment which can a                         | lso o                       | perate in a non-adaptive mode                         |  |
| Operating mode:          | $\boxtimes$     | Sing                                                                  | le Antenna Equipment                                |                             |                                                       |  |
|                          |                 | $\square$                                                             | Equipment with only 1 ante                          | nna                         |                                                       |  |
|                          |                 |                                                                       | Equipment with 2 diversity a any moment in time     | anter                       | nnas but only 1 antenna active at                     |  |
|                          |                 |                                                                       | Smart Antenna Systems wi (legacy) mode where only 2 |                             | or more antennas, but operating in a<br>enna is used. |  |
|                          |                 | Sma                                                                   | art Antenna Systems - Multip                        | le An                       | tennas without beam forming                           |  |
|                          |                 |                                                                       | Single spatial stream / Star                        | ndard                       | l throughput                                          |  |
|                          |                 |                                                                       | High Throughput (> 1 spatia<br>Bandwidth 1          |                             | ial stream) using Occupied Channel                    |  |
|                          |                 | High Throughput (> 1 spatial stream) using Occupied Ch<br>Bandwidth 2 |                                                     | eam) using Occupied Channel |                                                       |  |
|                          |                 | Smart Antenna Systems - Multiple Antennas with beam forming           |                                                     | tennas with beam forming    |                                                       |  |
|                          |                 |                                                                       | Single spatial stream / Star                        | ndard                       | l throughput                                          |  |
|                          |                 |                                                                       | High Throughput (> 1 spatia<br>Bandwidth 1          | al str                      | eam) using Occupied Channel                           |  |
|                          |                 |                                                                       | High Throughput (> 1 spatia<br>Bandwidth 2          | al str                      | eam) using Occupied Channel                           |  |
| Antenna type:            | $\boxtimes$     | Integ                                                                 | gral Antenna                                        |                             |                                                       |  |
|                          |                 |                                                                       | Temporary RF connector p                            | rovid                       | ed                                                    |  |
|                          |                 | $\boxtimes$                                                           | No temporary RF connecto                            | r pro                       | vided                                                 |  |
|                          |                 | Antenna Gain:1.2 dBi                                                  |                                                     |                             |                                                       |  |
|                          |                 | Beamforming gain:0dB                                                  |                                                     |                             |                                                       |  |
|                          |                 | Dedicated Antennas (equipment with antenna connector)                 |                                                     |                             | antenna connector)                                    |  |
|                          |                 | Single power level with corresponding antenna(s)                      |                                                     |                             | onding antenna(s)                                     |  |
|                          |                 |                                                                       | Multiple power settings and                         | corr                        | esponding antenna(s)                                  |  |
|                          |                 |                                                                       | Number of different Power                           | Leve                        | ls:                                                   |  |
|                          |                 |                                                                       | Power Level 1: dB                                   | m                           |                                                       |  |
|                          |                 |                                                                       | Power Level 2: dB                                   | m                           |                                                       |  |
|                          |                 |                                                                       | Power Level 3: dB                                   | m                           |                                                       |  |

| Information is provided by the supplier |                                                  |               |                                                                               |  |  |
|-----------------------------------------|--------------------------------------------------|---------------|-------------------------------------------------------------------------------|--|--|
| In case of FHSS                         | In case                                          | of non-Adapt  | tive Frequency Hopping equipment:                                             |  |  |
| modulation:                             | The nur                                          | mber of Hopp  | ing Frequencies:                                                              |  |  |
|                                         | In case of Adaptive Frequency Hopping Equipment: |               |                                                                               |  |  |
|                                         | The maximum number of Hopping Frequencies:       |               |                                                                               |  |  |
|                                         | The minimum number of Hopping Frequencies:       |               |                                                                               |  |  |
|                                         |                                                  |               | tion Time:                                                                    |  |  |
| In case of edentive                     |                                                  |               | ation Time:                                                                   |  |  |
| In case of adaptive equipment:          |                                                  |               | implemented by the equipment: / ms                                            |  |  |
|                                         |                                                  | •             | implemented an LBT based DAA mechanism tusing modulation different from FHSS: |  |  |
|                                         |                                                  |               | is Frame Based equipment                                                      |  |  |
|                                         |                                                  |               | is Load Based equipment                                                       |  |  |
|                                         |                                                  |               | can switch dynamically between Frame Based and                                |  |  |
|                                         |                                                  | ad Based eq   |                                                                               |  |  |
|                                         | The CC                                           | A time imple  | mented by the equipment:/ μs                                                  |  |  |
|                                         |                                                  |               |                                                                               |  |  |
|                                         | The equ                                          | uipment has i | mplemented an non-LBT based DAA mechanism                                     |  |  |
|                                         | The equ                                          | uipment can o | operate in more than one adaptive mode                                        |  |  |
| In case of non-                         | The maximum RF                                   | Output Pow    | ver (e.i.r.p.): dBm                                                           |  |  |
| adaptive Equipment                      | The maximum (co                                  | orresponding) | ) Duty Cycle: %                                                               |  |  |
| The worst case operat                   | ional mode for ea                                | ch of the fol | lowing tests:                                                                 |  |  |
| RF Output Power                         |                                                  |               | 9.93 dBm                                                                      |  |  |
| Occupied Channel Band                   | dwidth                                           |               | 36.36MHz                                                                      |  |  |
| Transmitter unwanted e                  | missions in the OO                               | B domain      | Reference to section 4.5                                                      |  |  |
| Transmitter unwanted e domain           | missions in the spu                              | irious        | Reference to section 4.6                                                      |  |  |
| Receiver spurious emis                  | sions                                            |               | Reference to section 4.7                                                      |  |  |
| FHSS                                    |                                                  |               |                                                                               |  |  |
| Dwell time:                             |                                                  |               |                                                                               |  |  |
| Minimum Freque                          | ncyOccupation:                                   |               |                                                                               |  |  |
| Hopping Sequen                          | ce:                                              |               |                                                                               |  |  |
| Hopping Frequer                         | ncy Separation                                   |               |                                                                               |  |  |
| ⊠ Other                                 |                                                  |               |                                                                               |  |  |
| Power Spectral [                        | Density:                                         |               | 1.71dBm/MHz                                                                   |  |  |
| Adaptive equipm                         | ent                                              |               |                                                                               |  |  |
| Adaptivity:                             |                                                  |               | -                                                                             |  |  |
| Receiver Blockin                        | g:                                               |               | -                                                                             |  |  |
| Non-adaptiveequ                         | iipment                                          |               |                                                                               |  |  |
| Duty cycle:                             |                                                  |               |                                                                               |  |  |
| Tx-Sequence:                            |                                                  |               |                                                                               |  |  |
| Tx-gap:                                 |                                                  |               |                                                                               |  |  |
| Medium Utilisatio                       | on:                                              |               |                                                                               |  |  |

# 2.3. EUT operation mode

The EUT has been tested under test mode condition. The Applicant provides software to control the EUT for staying in continous transmitting and receiving mode for testing.

And found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

| Mode         | Bit rate (worst mode) |
|--------------|-----------------------|
| 802.11b      | 1Mbps                 |
| 802.11g      | 6Mbps                 |
| 802.11n(H20) | 6.5Mbps               |
| 802.11n(H40) | 13.5Mbps              |

# 2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 $\, \bigcirc \,$  - supplied by the lab

| Length (m) :     | / |
|------------------|---|
| Shield : /       | / |
| Detachable : /   | / |
| Manufacturer : / | 1 |
| Model No. : /    | / |

# 2.5. Modifications

No modifications were implemented to meet testing criteria.

# 3. Test Environment

# 3.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

# 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

#### A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

#### FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

#### IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

# ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

# VCCI

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

#### DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

# 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature | Normal Temperature: | 25°C     |
|-------------|---------------------|----------|
|             | High Temperature:   | 55°C     |
|             | Low Temperature:    | -20°C    |
| Voltage     | Normal Voltage      | DC 3.70V |
|             | High Voltage        | DC 4.25V |
|             | Low Voltage         | DC 3.50V |
| Other       | lative Humidity     | 55 %     |
|             | Air Pressure        | 989 hPa  |

#### 3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics;Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

| Test Items                  | Measurement Uncertainty | Notes |
|-----------------------------|-------------------------|-------|
| Frequency range             | 25 Hz                   | (1)   |
| Transmitter power conducted | 0.57 dB                 | (1)   |
| Power Spectral Density      | 2.20 dB                 | (1)   |
| Radiated spurious emission  | 2.20 dB                 | (1)   |

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

# 3.5. Equipments Used during the Test

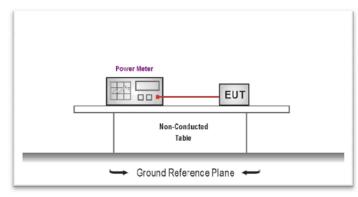
| TS899 | TS8997                       |              |           |            |           |           |  |  |  |  |  |
|-------|------------------------------|--------------|-----------|------------|-----------|-----------|--|--|--|--|--|
| Item  | Test Equipment               | Manufacturer | Model No. | Serial No. | Last Cal. | Next Cal. |  |  |  |  |  |
| 1     | Signal generator             | R&S          | SMB100A   | 177956     | 11/3/2015 | 11/2/2016 |  |  |  |  |  |
| 2     | Signal and spectrum analyzer | R&S          | FSV40     | 100048     | 11/3/2015 | 11/2/2016 |  |  |  |  |  |
| 3     | OSP                          | R&S          | OSP120    | 101317     | 11/3/2015 | 11/2/2016 |  |  |  |  |  |
| 4     | OSP                          | R&S          | OSP-B157  | 100890     | 11/3/2015 | 11/2/2016 |  |  |  |  |  |
| 5     | Climate Chamber              | ESPEC        | EL-10KA   | 05107008   | 11/3/2015 | 11/2/2016 |  |  |  |  |  |
| 6     | POWER SUPPLY                 | R&S          | NGMO1     | 1504.8420  | 11/3/2015 | 11/2/2016 |  |  |  |  |  |
| 7     | Vector signal generator      | R&S          | SMBV100A  | 260790     | NA        | NA        |  |  |  |  |  |

The Cal. Interval was one year

# 4. <u>Test conditions and Results</u>

# 4.1. Maximum transmit power

#### **Requirements & Limits**


#### ETSI EN 300 328 Sub-clause 4.3.2.2.2

For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. See clause 5.3.1 m). For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.

# TEST CONFIGURATION



#### **TEST PROCEDURE**

1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.

2. Please refer to ETSI EN 300 328 Sub-clause 5.3.2.2.1.2 for the measruement method.

Power Meter: sample speed 1MS/s Test bursts: 600

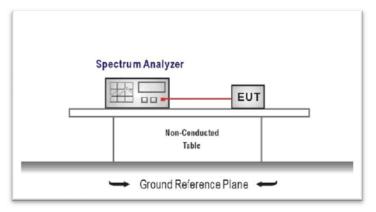
# TEST RESULTS

| Test conditions    |                |         |         | EIRP    | (dBm)            |                  | 1 tanti        |        |
|--------------------|----------------|---------|---------|---------|------------------|------------------|----------------|--------|
| Temperature<br>(℃) | Voltage<br>(V) | Channel | 802.11b | 802.11g | 802.11n<br>(H20) | 802.11n<br>(H40) | Limit<br>(dBm) | Result |
|                    |                | 01/03   | 9.37    | 8.79    | 8.46             | 8.32             |                |        |
| Tnor=25            | 3.70           | 07      | 9.82    | 9.23    | 9.43             | 9.69             |                |        |
|                    |                | 13/11   | 9.64    | 9.42    | 9.62             | 9.53             |                |        |
|                    |                | 01/03   | 9.27    | 8.68    | 8.35             | 8.19             |                |        |
|                    | 3.50           | 07      | 9.73    | 9.14    | 9.33             | 9.58             | 20.00          |        |
| Tlow=-20           |                | 13/11   | 9.52    | 9.30    | 9.50             | 9.39             |                |        |
| 110w=-20           | 4.25           | 01/03   | 9.52    | 8.95    | 8.62             | 8.51             |                |        |
|                    |                | 07      | 9.91    | 9.32    | 9.52             | 9.80             |                | Pass   |
|                    |                | 13/11   | 9.74    | 9.52    | 9.72             | 9.65             |                |        |
|                    |                | 01/03   | 9.26    | 8.68    | 8.34             | 8.19             |                |        |
|                    | 3.50           | 07      | 9.73    | 9.14    | 9.34             | 9.58             |                |        |
| Thigh-155          |                | 13/11   | 9.51    | 9.28    | 9.48             | 9.37             |                |        |
| Thigh=+55          |                | 01/03   | 9.45    | 8.87    | 8.55             | 8.42             | -              |        |
|                    | 4.25           | 07      | 9.93    | 9.34    | 9.55             | 9.82             |                |        |
|                    |                | 13/11   | 9.76    | 9.55    | 9.75             | 9.68             |                |        |

Note :

1.

Measured EIRP include the cable loss and antenna gain. Test channel 01, 07, 13 for 802.11b/802.11g/802.11n(H20), test channel 03, 07, 11 for 802.11n(H40). 2.


# 4.2. Maximum e.i.r.p. spectral density

#### **Requirements & Limits**

#### ETSI EN 300 328 Sub-clause 4.3.2.3.3

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm per MHz.

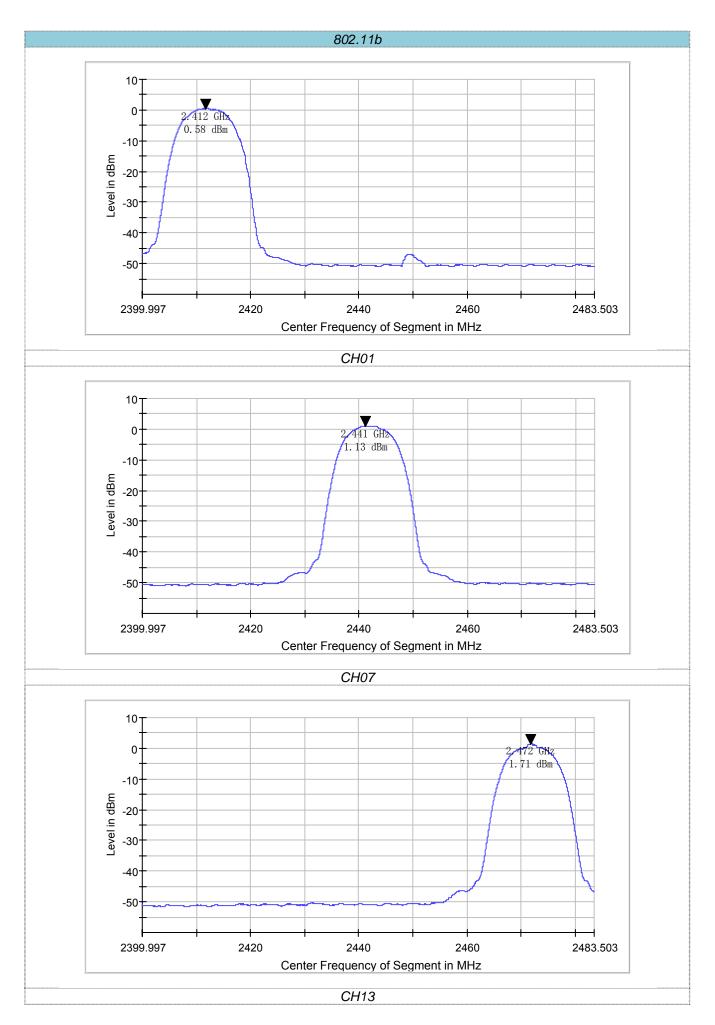
#### **TEST CONFIGURATION**

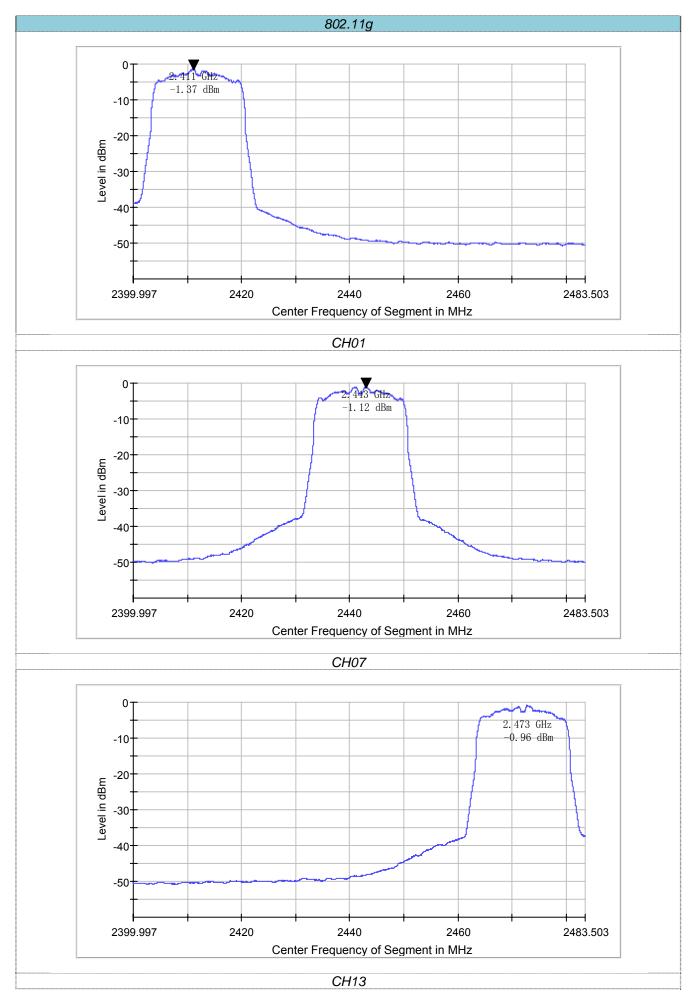


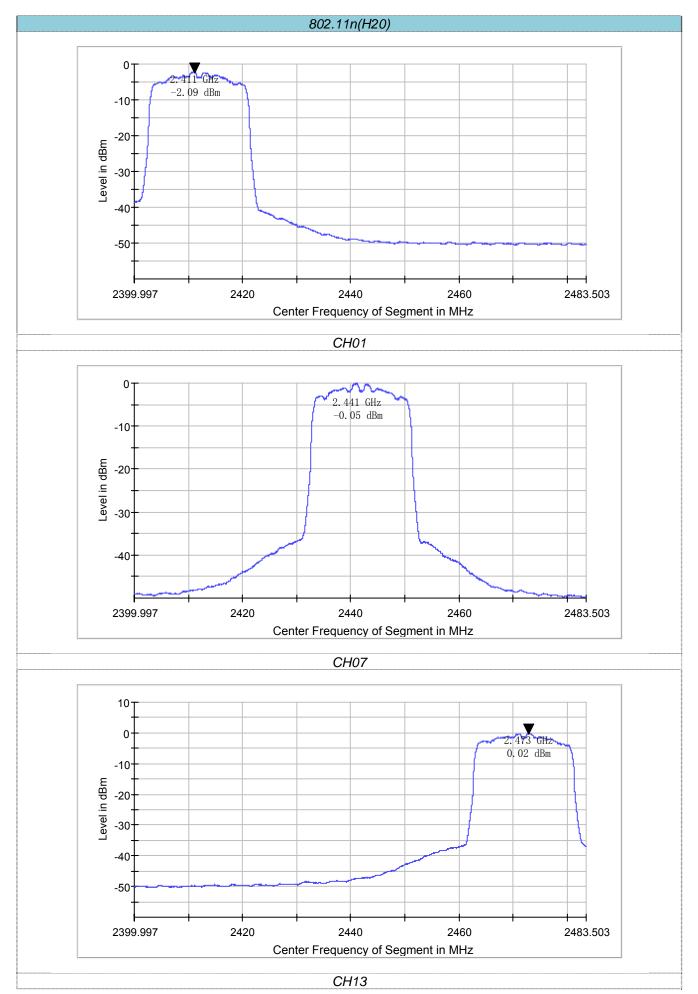
# TEST PROCEDURE

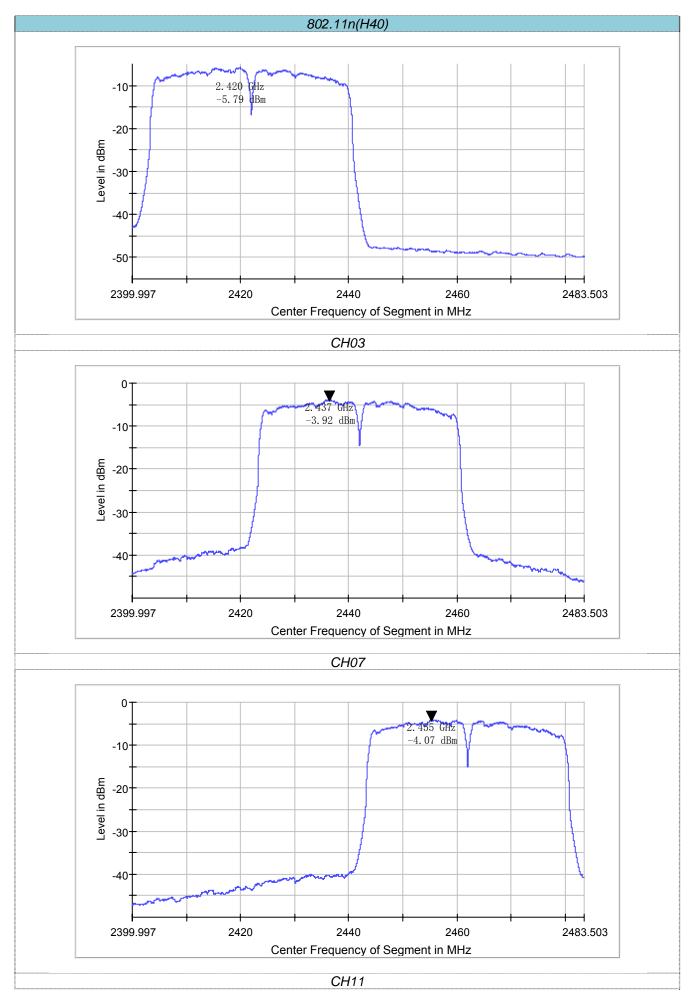
1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.

2.Please refer to ETSI EN 300 328 Sub-clause 5.3.3.2.1 for the measurement method.


Frequency range: 2400MHz-2483.5MHz RBW/VBW: 10KHz/30KHz Sweep points/time: >8350 / Auto Detector: RMS


#### TEST RESULTS


| Mode         | Channel | EIRP Density (dBm/MHz) | Limit (dBm/MHz) | Result |
|--------------|---------|------------------------|-----------------|--------|
|              | CH01    | 0.58                   |                 |        |
| 802.11b      | CH07    | 1.13                   |                 |        |
|              | CH13    | 1.71                   |                 |        |
|              | CH01    | -1.37                  |                 |        |
| 802.11g      | CH07    | -1.12                  |                 |        |
|              | CH13    | -0.96                  | 10.00           | Pass   |
|              | CH01    | -2.09                  |                 |        |
| 802.11n(H20) | CH07    | -0.05                  |                 |        |
|              | CH13    | 0.02                   |                 |        |
|              | CH03    | -5.79                  |                 |        |
| 802.11n(H40) | CH07    | -3.92                  |                 |        |
|              | CH11    | -4.07                  |                 |        |


Note: Measured value include the cable loss and antenna gain.

#### Test plot as follows:



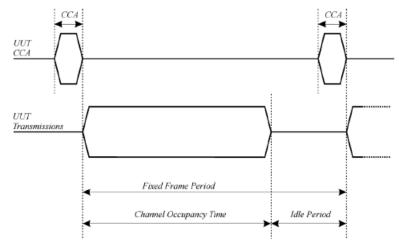






# 4.3. Adaptivity and Recever blocking

#### Requirements & Limits


#### ETSI EN 300 328 Sub-clause 4.3.2.6 and Sub-clause 4.3.2.11.3

# The frequency range of the equipment is determined by the lowest and highest Non-LBT based Detect and Avoid

- 1 During normal operation, the equipment shall evaluate the presence of a singnal on its current operating channel. If it is determined that a signal is present with a level above the detection threshold defined in step 5 the channel shall be marked as 'unavailable'.
- 2 The channel shall remain unavailable for a minimum time equal to 1 second after which the channel may be considered again as an 'available' channel;
- 3 COT  $\leq$  40 ms;
- 4 Idle Period = 5% of COT of the Channel Occupancy Time with a minimum of 100 μs; After this, the procedure as in step 1 needs to be repeated.
- 5 Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz (Pout in dBm);

# LBT based Detect and Avoid (Frame Based Equipment):

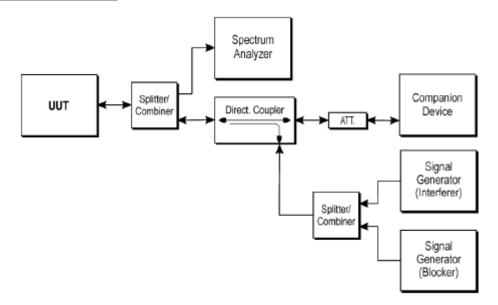
- 1 Minimum Clear Channel Assessment (CCA) time  $\geq$ 18 us;
- 2 The equipment is allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in clause 4.3.2.6.4(If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.);
- 3 COT =  $1 \sim 10$  ms; Idle Period = 5% of COT;
- 4 Control frames are allowed but data frames are not allowed;CCA << COT, See figure below;



5 Detection threshold level = -70dBm/MHz + (20dBm – Pout e.i.r.p)/1MHz (Pout in dBm);

# LBT based Detect and Avoid (Load Based Equipment):

- 1 Minimum Clear Channel Assessment (CCA) time  $\geq$ 18 us;
- 2 The equipment is allowed to continue Short Control Signalling Transmissions on this channel providing it complies with the requirements given in clause 4.3.2.6.4(If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.);
- 3 COT  $\leq$  13ms, after which the device shall perform a new CCA as described in step 1;
- 4 Control frames are allowed but data frames are not allowed;CCA << COT;
- 5 Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz (Pout in dBm).


#### Receiver Blocking

Adaptive equipment using wide band modulations other than FHSS, shall comply with the requirements defined in clause 4.3.2.6.2 (non-LBT based DAA) or clause 4.3.2.6.3 (LBT based DAA) in the presence of a blocking signal with characteristics as provided in below.

| Equipment Type<br>(LBT / non- LBT)                                                              | Wanted signal mean<br>power from companion<br>device | Blocking signal<br>frequency<br>[MHz] | Blocking<br>signal power<br>[dBm] | Type of<br>interfering<br>signal |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------|----------------------------------|--|--|--|
| LBT                                                                                             | sufficient to maintain the link (see note 2)         | 2 395 or 2 488,5<br>(see note 1)      | -35                               | CW                               |  |  |  |
| Non-LBT                                                                                         | -30 dBm                                              | (see note 1)                          |                                   |                                  |  |  |  |
| NOTE 1: The highest                                                                             | blocking frequency shall be                          | used for testing operatin             | g channels withir                 | n the range                      |  |  |  |
| 2 400 MHz to 2 442 MHz, while the lowest blocking frequency shall be used for testing operating |                                                      |                                       |                                   |                                  |  |  |  |
| channels wi                                                                                     | thin the range 2 442 MHz to 2                        | 2 483,5 MHz. See claus                | e 5.3.7.1.                        |                                  |  |  |  |
| NOTE 2. A typical ye                                                                            | lug which can be used in mer                         | t access in EO dDm/MLI-               |                                   |                                  |  |  |  |

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.

#### **TEST CONFIGURATION**



#### TEST PROCEDURE

1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.

2.Please refer to ETSI EN 300 328 Sub-clause 5.3.7.2 for the measurement method.

#### LBT based adaptive equipment using modulations other than FHSS

#### Step 1:

- The UUT shall connect to a companion device during the test.
- Adjust the received signal level.
- The analyser shall be set as follows:

RBW:  $\geq$  Occupied Channel Bandwidth (if the analyser does not support this setting, the highest available setting shall be used) (10MHz)

VBW: 3 × RBW (if the analyser does not support this setting, the highest available setting shall be used) (10MHz) Detector Mode: RMS

- Centre Frequency: Equal to the centre frequency of the operating channel
- Span: 0 Hz

Sweep time: > Channel Occupancy Time of the UUT

- Trace Mode: Clear/Write
- Trigger Mode: Video

#### Step 2:

Configure the UUT for normal transmissions with a sufficiently high payload.

#### Step 3:

Adding the interference signal.

#### Report No : TRE1603019104

The power spectral density level (at the input of the UUT) of this interference signal shall be equal to the detection threshold.

#### Step 4:

Verification of reaction to the interference signal.

#### Step 5:

Adding the blocking signal. The blocking signal power level shall be equal to -35dBm.

# Step 6:

Removing the interference and blocking signal

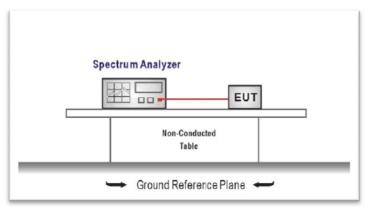
#### Step 7:

Step 2 to step 6 shall be repeated for next frequencies to be tested.

# TEST RESULTS

Not Application, This requirement dose not apply for equipment with a maximum declared RF Output power level of less than 10dBm e.i.r.p or for equioment when operating in a mode where the RF Output power is less than 10dBm e.i.r.p. The EUT's RF Output power is less 10dBm.

# 4.4. Occpied Channel Bandidth


#### **Requirements & Limits**

#### ETSI EN 300 328 Sub-clause 4.3.2.7.3

The Occupied Channel Bandwidth shall fall completely within the band given in clause 1.

In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

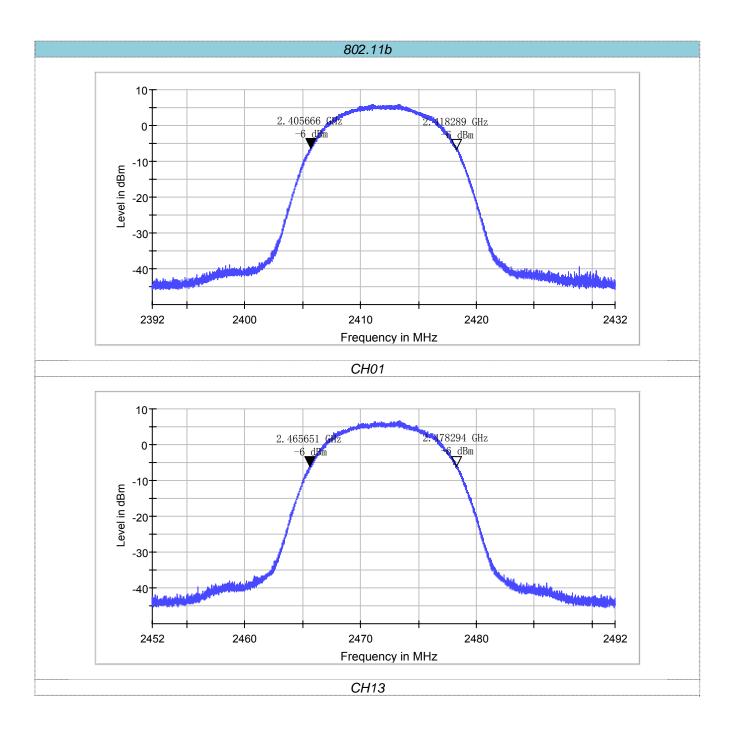
#### TEST CONFIGURATION

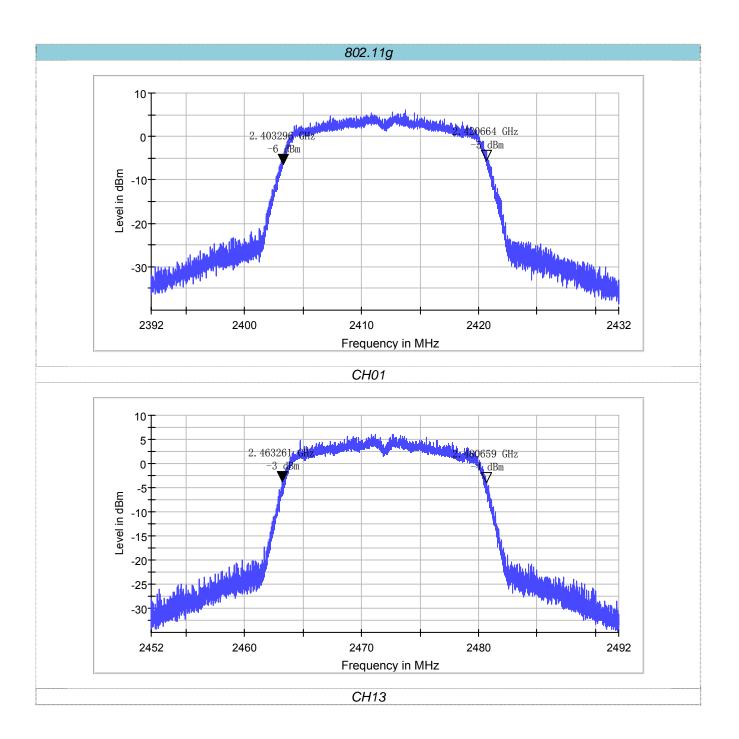


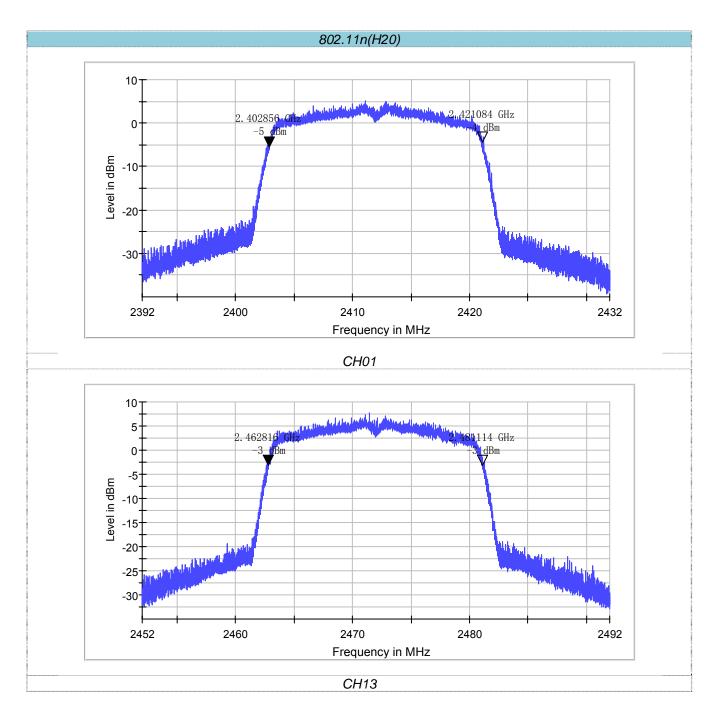
#### TEST PROCEDURE

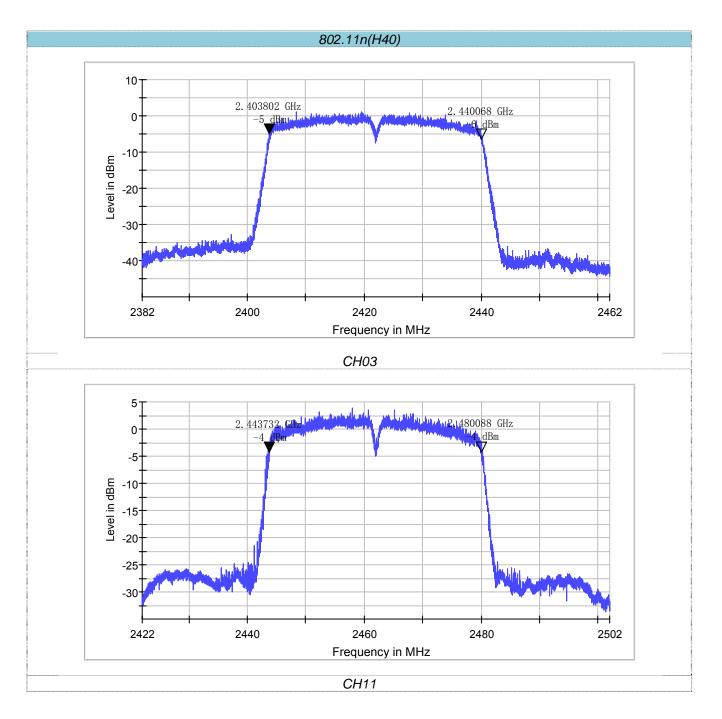
1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.

2.Please refer to ETSI EN 300 328 Sub-clause 5.3.8.2.1 for the measurement method.


#### Connect the UUT to the spectrum analyser and use the following settings:


| Centre Frequency: | The centre frequency of the channel under test                                   |
|-------------------|----------------------------------------------------------------------------------|
| Resolution BW:    | ~ 1 % of the span without going below 1 %(500KHz for 20MHz BW/1MHz for 40MHz BW) |
| Video BW:         | 3 × RBW(1.5MHz for 20MHz BW/3MHz for 40MHz BW)                                   |
| Frequency Span:   | 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)                |
| Detector Mode:    | RMS                                                                              |
| Trace Mode:       | Max Hold                                                                         |
| Seep time:        | 1 s                                                                              |
|                   |                                                                                  |


# TEST RESULTS


| Modulation    | Channel | Occupied Channel Bandwidth<br>(MHz) | Result |  |
|---------------|---------|-------------------------------------|--------|--|
| 902 11b       | CH01    | 12.62                               |        |  |
| 802.11b       | CH13    | 12.64                               |        |  |
| 000 11 ~      | CH01    | 17.36                               |        |  |
| 802.11g       | CH13    | 17.40                               | Daga   |  |
| 902 11p(U20)  | CH01    | 18.23                               | Pass   |  |
| 802.11n(H20)  | CH13    | 18.30                               |        |  |
| 902 11=(1140) | CH03    | 36.27                               | 1      |  |
| 802.11n(H40)  | CH11    | 36.36                               |        |  |

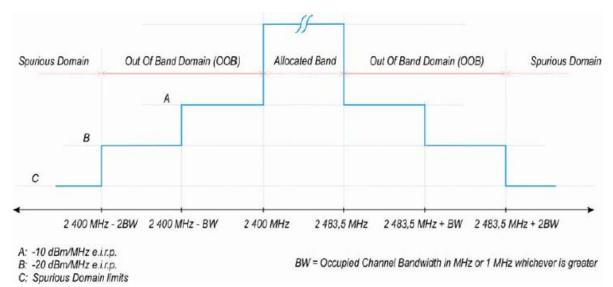
#### Test plot as follows:





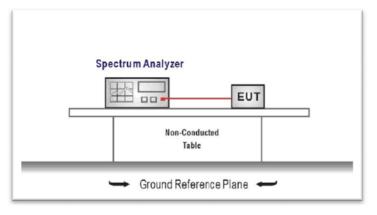





# 4.5. Transmitter unwanted emissions in the out-of-band domain

#### Requirements & Limits

#### ETSI EN 300 328 Sub-clause 4.3.2.7.2


The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

NOTE: Within the 2 400 MHz to 2 483,5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.7.

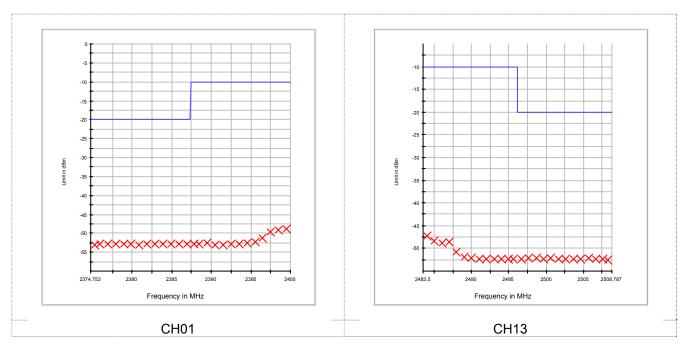




# TEST CONFIGURATION

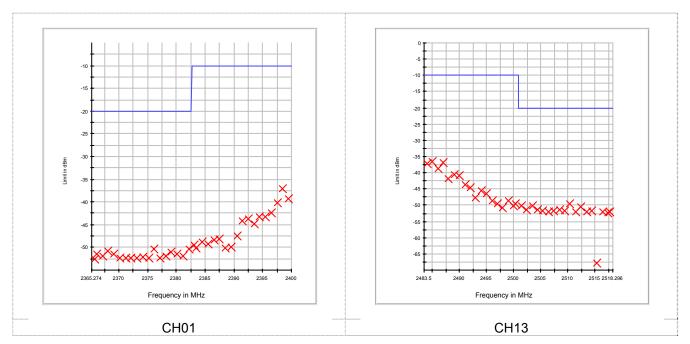


# TEST PROCEDURE


1.Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.

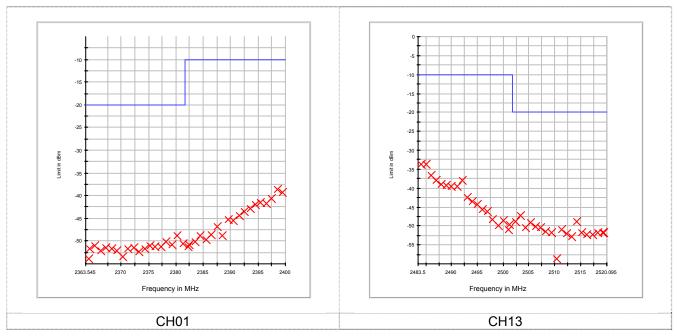
2.Please refer to ETSI EN 300 328 Sub-clause 5.3.9.2.1 for the measurement method.

RBW/VBW: 1MHz/3MHz Span: 0Hz Filter mode: Channel filter Detector: RMS


#### TEST RESULTS

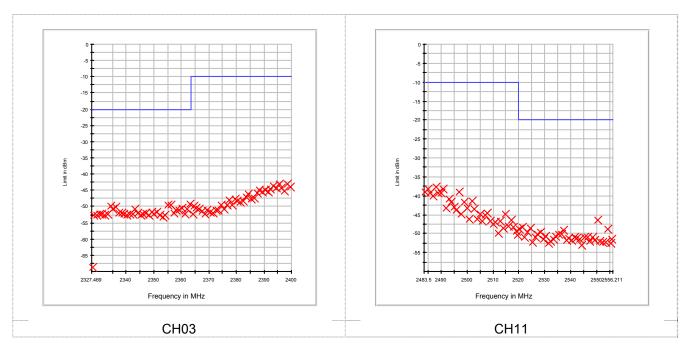
| 802.11b            |                |         |                          |            |        |       |        |  |  |
|--------------------|----------------|---------|--------------------------|------------|--------|-------|--------|--|--|
| Test cond          | litions        |         | Frequency ra             | ange (MHz) |        | Limit |        |  |  |
| Temperature<br>(℃) | Voltage<br>(V) | Channel | Channel Start Stop (dBm) |            |        | (dBm) | Result |  |  |
|                    |                | 01      | 2400-20BW                | 2400-OBW   | -52.03 | <-20  | Pass   |  |  |
| Tnor=25            | 3.70           | 01      | 2400-OBW                 | 2400       | -48.65 | <-10  | Pass   |  |  |
| 1101-25            |                | 13      | 2484                     | 2484+OBW   | -47.59 | <-10  | Pass   |  |  |
|                    |                | 13      | 2484+OBW                 | 2484+2OBW  | -52.12 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-20BW                | 2400-OBW   | -52.32 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-OBW                 | 2400       | -47.91 | <-10  | Pass   |  |  |
|                    | 3.50           | 13      | 2484                     | 2484+OBW   | -48.42 | <-10  | Pass   |  |  |
| Tlow=-20           |                | 13      | 2484+OBW                 | 2484+2OBW  | -52.95 | <-20  | Pass   |  |  |
| 110w20             | 4.25           | 01      | 2400-20BW                | 2400-OBW   | -53.41 | <-20  | Pass   |  |  |
|                    |                | _       | 2400-OBW                 | 2400       | -48.91 | <-10  | Pass   |  |  |
|                    |                |         | 2484                     | 2484+OBW   | -47.62 | <-10  | Pass   |  |  |
|                    |                | 13      | 2484+OBW                 | 2484+2OBW  | -52.21 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-20BW                | 2400-OBW   | -53.58 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-OBW                 | 2400       | -49.39 | <-10  | Pass   |  |  |
|                    | 3.50           | 13      | 2484                     | 2484+OBW   | -47.07 | <-10  | Pass   |  |  |
| Thigh-+55          |                | 13      | 2484+OBW                 | 2484+2OBW  | -52.92 | <-20  | Pass   |  |  |
| Thigh=+55          |                | 01      | 2400-20BW                | 2400-OBW   | -52.73 | <-20  | Pass   |  |  |
|                    | 4.25           |         | 2400-OBW                 | 2400       | -50.02 | <-10  | Pass   |  |  |
|                    | 4.20           | 13      | 2484                     | 2484+OBW   | -46.61 | <-10  | Pass   |  |  |
|                    |                | 15      | 2484+OBW                 | 2484+20BW  | -52.64 | <-20  | Pass   |  |  |




- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition

| 802.11g            |                |         |                          |            |        |       |        |  |  |
|--------------------|----------------|---------|--------------------------|------------|--------|-------|--------|--|--|
| Test cond          | litions        |         | Frequency ra             | ange (MHz) |        | Limit |        |  |  |
| Temperature<br>(℃) | Voltage<br>(V) | Channel | Channel Start Stop (dBm) |            |        | (dBm) | Result |  |  |
|                    |                | 01      | 2400-20BW                | 2400-OBW   | -50.02 | <-20  | Pass   |  |  |
| Tnor=25            | 3.70           | 01      | 2400-OBW                 | 2400       | -37.53 | <-10  | Pass   |  |  |
| 11101-25           |                | 13      | 2484                     | 2484+OBW   | -37.05 | <-10  | Pass   |  |  |
|                    |                | 15      | 2484+OBW                 | 2484+20BW  | -50.04 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-20BW                | 2400-OBW   | -50.50 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-OBW                 | 2400       | -37.27 | <-10  | Pass   |  |  |
|                    | 3.50           | 13      | 2484                     | 2484+OBW   | -36.57 | <-10  | Pass   |  |  |
| Tlow=-20           |                | 15      | 2484+OBW                 | 2484+20BW  | -49.28 | <-20  | Pass   |  |  |
| 110w20             | 4.05           | 4.25    | 2400-20BW                | 2400-OBW   | -51.21 | <-20  | Pass   |  |  |
|                    |                |         | 2400-OBW                 | 2400       | -36.74 | <-10  | Pass   |  |  |
|                    | 4.25           | 13      | 2484                     | 2484+OBW   | -36.13 | <-10  | Pass   |  |  |
|                    |                | 15      | 2484+OBW                 | 2484+20BW  | -49.61 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-20BW                | 2400-OBW   | -50.75 | <-20  | Pass   |  |  |
|                    |                | 01      | 2400-OBW                 | 2400       | -36.62 | <-10  | Pass   |  |  |
|                    | 3.50           | 13      | 2484                     | 2484+OBW   | -35.78 | <-10  | Pass   |  |  |
| Thigh=+55          |                | 15      | 2484+OBW                 | 2484+2OBW  | -49.08 | <-20  | Pass   |  |  |
| 111g11=+55         |                | 01      | 2400-20BW                | 2400-OBW   | -51.12 | <-20  | Pass   |  |  |
|                    | 4.25           | 01      | 2400-OBW                 | 2400       | -36.39 | <-10  | Pass   |  |  |
|                    | 4.20           | 13      | 2484                     | 2484+OBW   | -36.65 | <-10  | Pass   |  |  |
|                    |                | 15      | 2484+OBW                 | 2484+20BW  | -48.93 | <-20  | Pass   |  |  |




- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition

|                    | 802.11n(H20)   |         |              |            |                |                |        |  |  |  |  |
|--------------------|----------------|---------|--------------|------------|----------------|----------------|--------|--|--|--|--|
| Test conditions    |                |         | Frequency ra | ange (MHz) |                | Lingit         |        |  |  |  |  |
| Temperature<br>(℃) | Voltage<br>(V) | Channel | Start        | Stop       | Level<br>(dBm) | Limit<br>(dBm) | Result |  |  |  |  |
|                    |                | 01      | 2400-20BW    | 2400-OBW   | -48.03         | <-20           | Pass   |  |  |  |  |
| Tnor=25            | 3.70           | 01      | 2400-OBW     | 2400       | -38.68         | <-10           | Pass   |  |  |  |  |
| 1101=25            |                | 13      | 2484         | 2484+OBW   | -38.26         | <-10           | Pass   |  |  |  |  |
|                    |                | 13      | 2484+OBW     | 2484+2OBW  | -47.14         | <-20           | Pass   |  |  |  |  |
|                    |                | 01      | 2400-20BW    | 2400-OBW   | -47.24         | <-20           | Pass   |  |  |  |  |
|                    |                | 01      | 2400-OBW     | 2400       | -38.18         | <-10           | Pass   |  |  |  |  |
|                    | 3.50           | 13      | 2484         | 2484+OBW   | -37.48         | <-10           | Pass   |  |  |  |  |
|                    |                | 13      | 2484+OBW     | 2484+2OBW  | -46.46         | <-20           | Pass   |  |  |  |  |
| Tlow=-20           | 4.05           | 01      | 2400-20BW    | 2400-OBW   | -47.64         | <-20           | Pass   |  |  |  |  |
|                    |                | 4.25    | 2400-OBW     | 2400       | -38.72         | <-10           | Pass   |  |  |  |  |
|                    | 4.20           | 10      | 2484         | 2484+OBW   | -36.82         | <-10           | Pass   |  |  |  |  |
|                    |                | 13      | 2484+OBW     | 2484+2OBW  | -46.95         | <-20           | Pass   |  |  |  |  |
|                    |                | 01      | 2400-20BW    | 2400-OBW   | -47.10         | <-20           | Pass   |  |  |  |  |
|                    |                | 01      | 2400-OBW     | 2400       | -39.61         | <-10           | Pass   |  |  |  |  |
|                    | 3.50           | 13      | 2484         | 2484+OBW   | -36.95         | <-10           | Pass   |  |  |  |  |
| Thigh              |                | 13      | 2484+OBW     | 2484+2OBW  | -47.73         | <-20           | Pass   |  |  |  |  |
| Thigh=+55          |                | 01      | 2400-20BW    | 2400-OBW   | -47.10         | <-20           | Pass   |  |  |  |  |
|                    | 4.25           | UI      | 2400-OBW     | 2400       | -39.26         | <-10           | Pass   |  |  |  |  |
|                    | 4.20           | 10      | 2484         | 2484+OBW   | -37.63         | <-10           | Pass   |  |  |  |  |
|                    |                | 13      | 2484+OBW     | 2484+2OBW  | -47.23         | <-20           | Pass   |  |  |  |  |



- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition

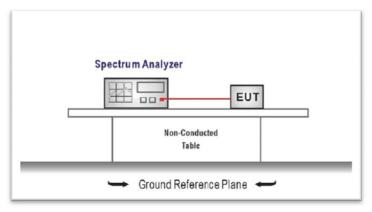
|                    | 802.11n(H40)   |         |                       |           |                |                |        |  |  |  |  |
|--------------------|----------------|---------|-----------------------|-----------|----------------|----------------|--------|--|--|--|--|
| Test conditions    |                |         | Frequency range (MHz) |           | 1              | Lineit         |        |  |  |  |  |
| Temperature<br>(℃) | Voltage<br>(V) | Channel | Start                 | Stop      | Level<br>(dBm) | Limit<br>(dBm) | Result |  |  |  |  |
|                    |                | 03      | 2400-20BW             | 2400-OBW  | -49.63         | <-20           | Pass   |  |  |  |  |
| Tnor=25            | 3.70           | 03      | 2400-OBW              | 2400      | -42.59         | <-10           | Pass   |  |  |  |  |
| 11101-25           |                | 11      | 2484                  | 2484+OBW  | -37.55         | <-10           | Pass   |  |  |  |  |
|                    |                | 11      | 2484+OBW              | 2484+2OBW | -46.03         | <-20           | Pass   |  |  |  |  |
|                    |                | 02      | 2400-20BW             | 2400-OBW  | -48.86         | <-20           | Pass   |  |  |  |  |
|                    |                | 03      | 2400-OBW              | 2400      | -42.10         | <-10           | Pass   |  |  |  |  |
|                    | 3.50           | 11      | 2484                  | 2484+OBW  | -38.31         | <-10           | Pass   |  |  |  |  |
| Tlow=-20           |                |         | 2484+OBW              | 2484+2OBW | -45.36         | <-20           | Pass   |  |  |  |  |
| 110w=-20           | 4.25           | 03      | 2400-20BW             | 2400-OBW  | -49.25         | <-20           | Pass   |  |  |  |  |
|                    |                |         | 2400-OBW              | 2400      | -42.63         | <-10           | Pass   |  |  |  |  |
|                    | 4.20           | 11      | 2484                  | 2484+OBW  | -37.66         | <-10           | Pass   |  |  |  |  |
|                    |                | 11      | 2484+OBW              | 2484+2OBW | -45.84         | <-20           | Pass   |  |  |  |  |
|                    |                | 03      | 2400-20BW             | 2400-OBW  | -48.71         | <-20           | Pass   |  |  |  |  |
|                    |                | 03      | 2400-OBW              | 2400      | -41.76         | <-10           | Pass   |  |  |  |  |
|                    | 3.50           | 11      | 2484                  | 2484+OBW  | -37.54         | <-10           | Pass   |  |  |  |  |
| Thigh-IEE          |                |         | 2484+OBW              | 2484+2OBW | -45.08         | <-20           | Pass   |  |  |  |  |
| Thigh=+55          |                | 03      | 2400-20BW             | 2400-OBW  | -48.72         | <-20           | Pass   |  |  |  |  |
|                    | 4 05           | 03      | 2400-OBW              | 2400      | -41.41         | <-10           | Pass   |  |  |  |  |
|                    | 4.25           | 11      | 2484                  | 2484+OBW  | -36.87         | <-10           | Pass   |  |  |  |  |
|                    |                | 11      | 2484+OBW              | 2484+2OBW | -45.57         | <-20           | Pass   |  |  |  |  |



- 1. Radiant level is far less than the limit, Only show the worst test result.
- 2. Only show the test plot on normal condition

# 4.6. Transmitter spurious emissions

#### Requirements & Limits

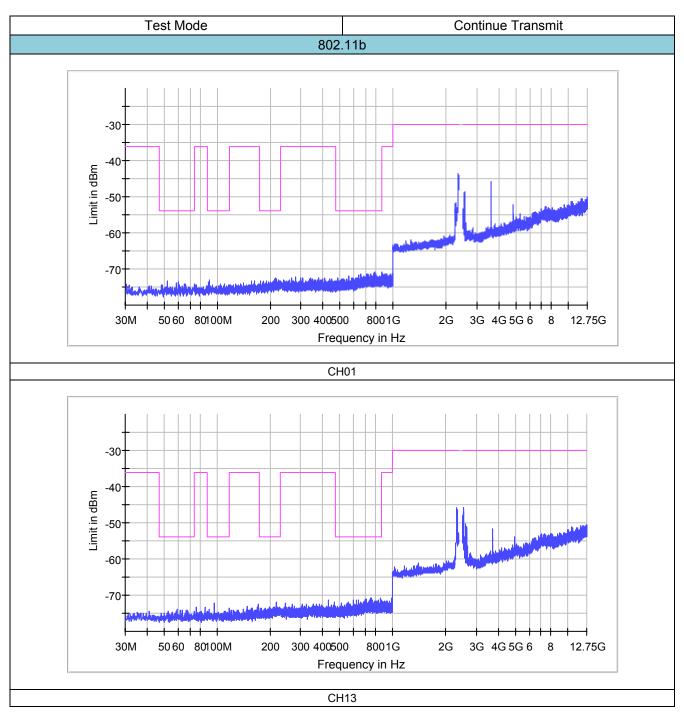

#### ETSI EN 300 328 Sub-clause 4.3.2.9.3

- The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 1.

| Table 1  | Tronomittor | limito          | for | opuriouo | omioniono   |
|----------|-------------|-----------------|-----|----------|-------------|
| Table I. | Transmitter | IIIIIIIIIIIIIII | 101 | spunous  | 61112210112 |

| Frequency Range     | Maximum power<br>e.r.p.(.≤1 GHz)<br>e.i.r.p.(>1 GHz) | Limit when Standby |
|---------------------|------------------------------------------------------|--------------------|
| 30 MHz to 47 MHz    | -36 dBm                                              | 100 KHz            |
| 47 MHz to 74 MHz    | -54 dBm                                              | 100 KHz            |
| 74MHz to 87.5 MHz   | -36 dBm                                              | 100 KHz            |
| 87.5 MHz to 118 MHz | -54 dBm                                              | 100 KHz            |
| 118 MHz to 174 MHz  | -36 dBm                                              | 100 KHz            |
| 174 MHz to 230 MHz  | -54 dBm                                              | 100 KHz            |
| 230 MHz to 470 MHz  | -36 dBm                                              | 100 KHz            |
| 470 MHz to 862 MHz  | -54 dBm                                              | 100 KHz            |
| 862 MHz to 1 GHz    | -36 dBm                                              | 100 KHz            |
| 1 GHz to 12.75 GHz  | -30 dBm                                              | 1 MHz              |

#### **TEST CONFIGURATION**




# TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.10.2 for the measurement method.

Resolution Bandwidth:100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)Video Bandwidth:300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)Detector:Peak for prescan/RMS for emission retest

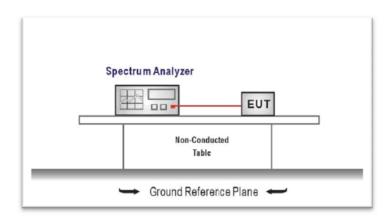
# TEST RESULTS



Note: The Transmitter spurious emission are performed the each mode, the datum recorded is the worst case for all the mode at 802.11b mode.

#### 4.7. Receiver spurious emissions

#### **Requirements & Limits**

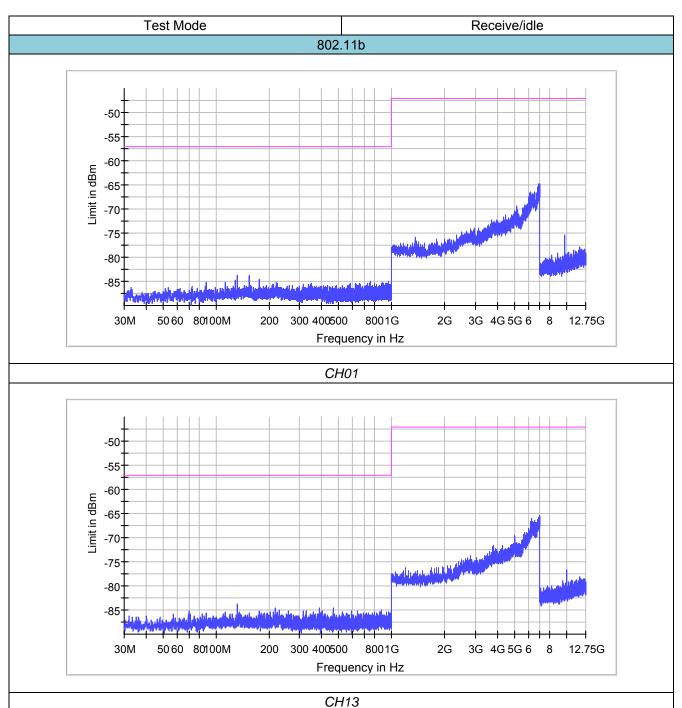

#### ETSI EN 300 328 Sub-clause 4.3.2.10.3

The spurious emissions of the receiver shall not exceed the values given in table 2.

| Table 2: spurious emission limits for receivers |
|-------------------------------------------------|
|-------------------------------------------------|

| Frequency          | Maximum power, e.r.p. | Measurement bandwidth |
|--------------------|-----------------------|-----------------------|
| 30 MHz to 1 GHz    | -57 dBm               | 100 KHz               |
| 1 GHz to 12.75 GHz | -47 dBm               | 1 MHz                 |

# **TEST CONFIGURATION**




#### **TEST PROCEDURE**

- 1. Please refer to ETSI EN 300 328 Sub-clause 5.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 Sub-clause 5.3.11.2 for the measurement method.

Resolution Bandwidth:100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)Video Bandwidth:300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)Detector:Peak for prescan/RMS for emission retest

# TEST RESULTS



Note: The Transmitter spurious emission are performed the each mode, the datum recorded is the worst case for all the mode at 802.11b mode.

# 5. Test Setup Photos of the EUT



# 6. External and Internal Photos of the EUT

Reference to the test report No.: TRE1603019101

-----End of Report-----